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University of Washington
Abstract

Green’s Function Analysis of Pavement Deflections
due to Moving Wheel Loads

by Richard G. Thuma

Chairperson of the Supervisory Committee: Professor Steven L. Kramer
Department of Civil Engineering

Nondestructive pavement deflection testing is commonly used to evaluate the
structural capacity of flexible pavements. Different types of tests, characterized by their
loading mechanism -- static or dynamic, stationary or moving -- are used for this purpose.
For all tests, a pavement deflection model is used to interpret the measured deflections.
This thesis presents the conceptual development, validation, and parametric study of a
flexible pavement model for predicting deflections caused by a rolling wheel.

The model uses a Green’s function approach to compute deflections. The Green’s
function computes the deflections at a known distance from a disk that is loaded
harmonically at a known frequency. The deflections caused by an impulse load are
computed using Fourier superposition analysis. The rolling wheel load is modeled as a
sequence of impulse loads and the model combines the responses from each impulse to
predict a deflection basin that would be seen by an observer moving with the wheel. This
process assumes that all materials in the pavement structure behave linear-elastically.

The model was validated by predicting deflections caused by falling weight
deflectometer (FWD) tests. Predicted deflections were reasonably close to measured
deflections; however, the pavement layer moduli used in the validation were
backcalculated using static rather than dynamic models.

The sensitivity of the computed deflection basin to three categories of input
parameters -- algorithm, material, and loading -- was investigated by a detailed

parametric study. Algorithm variables were studied to determine the values that




produced the most accurate solution in the minimum time. The sensitivity of the basin
shape to layer material variables provided insight into which variables can be potentially
backcalculated with this model. Loading variables were studied to determine the effect
that the wheel speed, load, and tire pressure had on the deflection basin shape. The
parametric study revealed that backcalculation of layer moduli or thicknesses may be
possible using this model. However, backcalculating both layer modulus and thickness
simultaneously will require a very precise definition of the deepest part of the deflection

basin. The model may not be practical for use in a backcalculation program until the

computation time can be reduced.
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Chapter 1
INTRODUCTION

1.1  Background

Researchers have recognized for many years that the structural capacity and life
expectancy of roadways was related to the load-deflection properties of the pavement
system materials. To determine these properties, two basic testing methods can be used --
destructive or non-destructive.

Destructive testing requires removing material from the roadway and then
performing laboratory tests on the samples. An obvious disadvantage of this method of
testing is the time and cost associated with collecting samples and repairing the damaged
pavement. However, there are two very important additional disadvantages. First,
samples cut from the roadway and underlying soils are considerably disturbed -- this casts
doubt on the transferability of the results of lab tests to the field situation. Second, the
roadway is composed of several layers of materials (illustrated in Figure 1-1), each
composed of inherently heterogeneous materials. Destructive testing considers only a
small sample of the materials, and does not test the interaction between material layers.

Non-Destructive testing (NDT), as the name suggests, does not require sample
collection. Instead it indirectly measures material properties in situ. Besides the shorter
test times and relatively low cost, NDT is superior to destructive testing because it
measures a larger volume of material, and tests the way the individual layers interact. An
additional advantage to non-destructive testing is that the pavement can be evaluated
using the same load that it is designed to resist -- i.e. the pavement can be loaded with a
truck.

Several types of non-destructive tests have been developed to measure the
deflections caused by an applied load. Static tests apply a constant load to a stationary
area and dynamic tests apply a vibrating or impact load to a stationary contact plate.

Each test measures the associated static or dynamic deflections using a variety of devices.
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Figure 1-1. Typical three-layered flexible pavement cross section.

Recently a new type of testing device has been developed that measures the
deflections caused by a rolling wheel. This type of device has tremendous potential for
determining the true dynamic properties of pavement structures because it applies exactly
the same load that is applied by highway vehicles. Using this device, a better
understanding of the deflection behavior and resulting damage caused by traffic can be
developed.

All non-destructive tests require models to interpret the measured deflection data
because the material properties cannot be measured directly (i.e. deflection is not a
material property). Using models, the layer material properties are adjusted until the
predicted deflections match the measured deflections. Using a process called
backcalculation, the layer material properties are adjusted until the deflections predicted
by the model match the measured deflections. The properties used to calculate the
matching prediction then correspond to the properties of the pavement structure.

Models range in complexity from simple static load formulas to intricate dynamic
finite element computer programs. Many static and several dynamic models have been

developed to interpret stationary load test deflections. However, only a few models exist

that predict deflections caused by a moving load.




1.2  Objectives

The main objective of this research was to develop a model to predict the
deflections resulting from a rolling wheel load. To accurately model pavement structures,
. the model must be capable of considering a multi-layered system. Towards this end, a
Green’s function approach was selected as the method for dynamic analysis. Also, the
model must be capable of predicting the shape of a constantly-moving deflection basin
because the sensors that measure the deflections are attached to the moving vehicle.

| Because other rolling-wheel models and deflection measurements were not
readily available, the model was compared to a different dynamic test -- the falling
weight deflectometer. This test applies an impact load to a stationary contact plate. This
validation required modification of the primary model to allow for the different loading
conditions, but the principal components remained identical.

The sensitivity of the model to the most significant input parameters was
determined using a detailed parametric study. The changes in deflection basin shape due
to material properties and loading conditions was investigated. Also, the conceptual
parameters that influence the computation speed and accuracy were studied‘ to determine
the values that produced the best ;accuracy in the least time.

With a completed modei, backcalculation can be used to determine material
properties from measured deflections. However, developing a backcalculation scheme
was outside the scope of this research. Only the forward model was created and

analyzed.

1.3 Organization

The first portion of this thesis describes the development of non-destructive
testing and the models used to interpret the tests. The latter portion explains the
development and validation of the rolling wheel model. The following paragraphs

provide a brief description of each chapter.
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Chapter 2 describes the non-destructive tests that have historically been used to

evaluate pavements. The te>sting devices are grouped according to the method by which
the load is applied to the pavement: static, steady-state dynamic, transient dynamic,
transient surface wave, and rolling wheel. The pavement response produced by each
loading scheme and the applications for each test are also described. The analytiéal
models used to interpret the data measured by NDT devices are explained in Chapter 3.
Again, the models are grouped by the assumed load type: static, dynamic stétionary load,
and dynamic rolling load. For each load type, the simplest models are described first,
followed by the more complicated models.

Chapter 4 explains the Green’s function concept and describes how it was used to
develop a solution for the deflections of a layered pavement system subjected to
harmonic loading. Chapter 5 provides a detailed conceptual developmentvof an algorithm
for calculating the deflection basin ‘caused by arolling wheel. The simplest case, a
stationary transient load, is considered first, followed by additional cases that add
incremental levels of complexity. Initially, a simulated deflection response function is
employed to easily illustrate the applied concepts. Eventually, the chapter describes how
the trué Green’s function solution was used with this algorithm in the computer pfo gram
BASIN. The program BASIN was veriﬁed by comparing the calculated deflections to
falling-weight deflectometer data, as described in Chapter 6. The results of a parametric
study of BASIN are presented in Chapter 7. The study shows the influence of the most
significant input variables on the deflection basin shape. First, a “standard” pavement
section was established, so that all subsequent variations would have a common basis for
comparison. Next, each input parameter was systematically adjusted to illustrate its
influence on the calculated basin. Finally, Chapter 8 summarizes the findings of this
research project, lists the conclusions drawn from this research, and makes
recommendations for further study. |

The model developed in this research was coded into a computer program called

BASIN. The FORTRAN code for BASIN is listed in Appendix A.



Chapter 2 ‘
NONDESTRUCTIVE PAVEMENT DEFLECTION ANALYSIS

The first nondestructive pavement testing device, the Travel Gage, was installed
by General Electric in 1938 on a California highway. It consisted of holes drilled in the
pavement to different depths with calibrated rods inserted in the holes. As a vehicle
drove over the instrumented pavement section, technicians observed and manually

 recorded the deflections (Moore et al., 1978). Although this device performed reasonably
well, engineers soon realized that a mobile, non-intrusive pavement testing device would
be much more useful for assessing pavement and subgrade stiffness.

As numerous technological and theoretical advances occurred over the next 50
years, engineers developed many different devices for determining the stiffness of a
pavement system. These nondestructive devices can be grouped into five broad
categories, distinguished by their different loading schemes.

1) Static
- 2) Steady-State Dynamic
3) Transient Dynamic
4) Transient Surface Wave Analysis
5) Moving Wheel
This chapter describes the general concepts, loading responses, testing equipment, and

applications for each category of pavement testing device.
2.1 Static Load

2.1.1 General _

Pavement evaluation systems using stationary or very slowly moving loads fall
into the category of static deflection devices. Measurements are taken before and after
loading, or at points radially outward from a loaded plate. The primary problem with
these systems is establishing a reference point from which to measure the deflection -- the

point must be close enough to be convenient, yet far enough away that it is not affected
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by the load. Because of this problem, the deflection data obtained by static devices is

often questionable. However, because so much data has been collected with these
devices, the developed correlations are considered fairly reliable (Moore et al., 1978)

The first static deflection measurement device, the GE Travel Gage, was intrusive,
using rods inserted into drilled holes of differeht depths to measure the deflection of
pavement and subgrade layers. To improve data acquisition speed, the rods were
outfitted with linear variable differential transformers (LVDTs - an electronic dial gauge).
This device was extensively used to measure pavement deflections during the Western
~ Association of State Highway Officials (WASHO) Road Test conducted in southeastern
Idaho in 1952. However, the Travel Gage still proved too slow and expensive for
widespread use (Moore et al., 1978).

Based on observations at the WASHO Road Test, planners realized a mobile
pavement testing device would be needed to evaluate pavement at specific locations
Whiie the test progressed. Fortunately, A.C. Benkelman was developing a simple lever-
arm device to measure static deflections of flexible pavements. He released this device,
dubbed the Benkelman Beam, in 1952. As éarly as 1954, the California Division of
Highways began widespread use of the Benkelman Beam (Moore et al;, 1978). Many
other agencies followed California’s lead, while others chose to improve upon the
manually operated, tedious instrument. These versions, using the same concept, included
the Traveling Deflectometer and the LaCroix - L.C.P.C. (Laboratoire Central des Ponts et
Chaussées) Deflectograph, which greatly improved the data collection speed (Moore et
al., 1978). '

2.1.2 Pavement Deflection Response

Static loading devices create a static deflection basin, which has a magnitude and
shape that is dependent on the stiffness of the pavement system. Deflection basins
produced by static testing devices are relatively large (up to 10.2 mm (400 mils))

compared to other tesﬁng devices because the loads are large and applied for a long time
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(several minutes). (Hoffman and Thomson, 1981). Very slow moving loads (less than -

3.2 km/hr (2 mph)) create a moving deflection basin that, for all practical purposes, is
identical to a stationary basin. Thus, static devices have two potential methods for
determining the shape of the deflection basin.
1) A stationary load can be applied and deflections measured directly under
and at points radially outward from the loading plate.
2) Deflections can be measured periodically at one stationary point, while the
load is slowly rolled away.

The deflections obtained from either of these methods are plotted as function of
distance from the load, as illustrated in Figure 2-1. Rotating this deflection shape around
the center of the load creates the entire static deflection basin. Once the shape of the
basin is defined, parameter correlations or backcalculation techniques are used to

determine the pavement system properties.
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Figure 2-1. Deflection basin and individual deflections produced by a loaded plate as measured by seven
deflection sensors.

Correlations directly relate one measurement or index to a pavement property. In

pavement analysis, two parameters are commonly used for correlations:




D(r) -- the magnitude of the deflection, D, at a distance, , from the
center of the loading plate. Many correlations between deflections and moduli
have been developed, and they generally follow the trend that deflections
under and nearby the load plate correlate best to AC layer fnodulus,
deflections in the middle of the basin (between 300 and 900 mm (11.8 and
35.4 in) from the center of the load) correlate best to the base course modulus,
and deflections at the edge of the basin relate best to the subgrade modulus.

Area Parameter -- a normalized index equal to the sum of the areas of the
trapezoids defined by the deflection measurements divided by the deflection
directly under the center of the loading plate. For example, the area parameter
from Figure 2-1 would be given by:

_05L
DO

A

(D, +2D, +2D, +2D; +2D, +2D; + D;)

Several correlations have been made between the area parameter and
pavement layer stiffnesses. |
Backcalculation techniques are iterative, require multiple calculations, and use

computer programs to quickly solve complicated mathematics. First, a predicted
deflection basin is calculated using a model and compared to the measured deflection
basin. Next, certain material parameters are adjusted, and finally the predicted deflection
basin is recalculated, beginning the next iteration. Iterations continue until the predicted
deflection basin matches the measured deflection basin, within a tolerable error. The
values of material parameters that were used to produce the matching deflection basin

correspond to the actual pavement parameters.

2.1.3 Testing Devices
ASTM D4695-87 (Standard Guide for General Pavement Deflection

Measurements) provides guidance for using static deflection devices.




'2.1.3.1 Benkelman Beam .

A long beam carefully placed between the dual tires of a loaded truck (usually
with 80 kN (18,000 Ib) rear axle weight) measures the deflected pavement position. As
the truck slowly drives away and the pavement rebounds, the beam rotates around a
stationary pivot point. The new position represents the undeflected pavement elevation
and is compared to the deflected elevation. An observer reads the measurements from a
dial gauge that is accurate to 25.4 pm (0.001 in) and then calculates the deflection.
Figure 2-2 illustrates the basic components of the Benkelman Beam.

The Benkelman Beam is simple and inexpensive, but relatively slow. The
instrument alone costs only about $1,000 and an experienced crew can make between 300
and 400 measurements in a day. Of course, traffic must be carefully controlled around

the testing crew to ensure their safety.
Axle Load

Reference Beam
Support

DI
Dual \ ial Gauge

o 9

Figure 2-2. Schematic representation of the Benkelman Beam (after Meier, 1995).

\

21327 raveling Deflectometer

The Traveling Deflectometer is essentially an automated version of the
Benkelman Beam and was used by the California Division of Highways. A tractor-trailer
outfitted with two lever arms simultaneously measures the deflection between each set of
dual tires on its 80 kN (18,000 1b) rear axle. Undeflected measurements are recorded by

separate probes located beyond the loaded axle’s influence zone. Measurements are
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recorded every 6.1 m (20 ft) as the vehicle rolls forward at a creep speed of 0.8 km/hr

(0.5 mph).
With this device, 1,500 to 2,000 measurements are possible in a single day
(Moore et al., 1978). Also, safety was greatly improved with this device because the

‘operators ride on the vehicle during the test.

2.1.3.3 LaCroix - L.C.P.C. Deflectograph

The LaCroix - L.C.P.C. Deflectograph is very similar to the Traveling
Deflectometer -- it also is essentially an automated Benkelman Beam. It uses the 116 kN
(26,000 1b) rear axle of a truck to load the pavement, and measures deflections with a
unique moving beam system. As the truck rolls slowly forward at 1.8 km/hr (1.1 mph),
twin measurement beams, each analogous to a Benkelman Beam, are lowered to rest on
the pavement surface. The frame supporting the beams slides slowly backwards to keep
the probe tips in exactly the same place while the wheels roll forward. The probe tips
start about one meter in front of the rear wheels and stay on the pavément until they reach
a maximum deflection, slightly behind the rear wheels. Thus, entire deflection basins can
be measured and automatically recorded by the Deflectograph. When a test is complete,
the beams quickly slide forward to start the testing cycle again (Prandi, 1967).

The LaCroix - L.C.P.C Deflectograph is significantly fastér than the Benkelman
Beam or the Traveling Deflectometer. Prandi (1967) reported that 7,000 to 8,000
measurements were possible in a single day. However, he added a caveat to this report

(4

that speaks to the accuracy of the measurements, “...pavement deformability is better
expressed through analysis of numerous deflection measurements, even not very accurate,

than by that of a few measurements, even highly accurate.”

2.1.3.4 Plate Bearing Test
In the plate bearing test, a hydraulic jack reacts against a stationary frame (usually

a heavy tractor-trailer) to load a steel plate. This method is very slow (2-3 hours per test)
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and used primarily for asphalt overlay thickness design for existing pavement

structures. The US Navy procedure for this test uses two separate load plates, 203 and
760 mm (8 and 30 in) diameter, and loads are applied until a 5.1 mm (0.2 in) deflection is

observed directly under the load plate (Moore et al., 1978).

2.1.4 Application

» Static deflection devices showed promise and filled a valid role during their time,
but now have been outdated by technological advances. However, the data relationships
developed for static devices still are used today for correlating steady-state and impulsive
loading testing to pavement overly design.

Even though static devices were widely used by highway officials, engineers
realized that static loading devices had several problematic features. First, deteridrated,
loosely bound pavement surfaces are difficult, if not impossible, to test with static devices
because the probe tip can move erratically if it rests on a loose stone. Second, a
convenient, undeflected reference point for deflection measurements is difficult to find.
Stiffer pavements with bound base course materials have wider basins and smaller
amplitude deflections, thus, the Deﬂectograph and Traveling Deflectometer may not
record reference pdints that are truly undeflected. Third, the static loading scheme does

not incorporate the dynamic effects of a rolling wheel load.

2.2  Steady State Dynamic Load
The next generation of pavement testing devices, steady-state dynamic load,

overcame some of the limitations of static testing devices.

2.2.1 General
All steady-state deflection devices cyclically load and unload the pavement to
‘induce a steady-state sinusoidal vibration in the pavement. The dynamic force generator

applies a load time history similar to that shown in Figure 2-3 by superimposing the
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dynamic load on the static load produced by the weight of the equipment. Note that

the dynamic force (peak-to-peak) must be less than twice the static weight of the
equipment to ensure continuous contact with the pavement surface.

Steady-state devices represent a significant improvement over static instruments
because they overcome the problem of finding a stationary reference point for measuring
deflections. Rather than measuring the absolute deflection due to the dynamic load, the
device measures the amplitude of the relative deflection produced by the dynamic load.
In other words, an inertial reference system is used and the amplitude of the deflection
(peak-to-peak deflection value) can be compared directly to the amplitude of the dynamic
force (peak-to-peak force value). Therefore, for a given dynamic force amplitude, a

smaller deflection amplitude indicates a stiffer pavement.

/[ Dynamll Force
Force (Peak-to-Peak)

Static Force

Time —»

Figure 2-3. Typical output of force generator used for steady-state dynamic testing.

Improvements in deflection measurement systems also make steady-state devices
a practical alternative to static systems. With steady-state devices, deflections are
measured with electronic displacement, velocity, or acceleration transducers, rather than

dial gauges or LVDTs. These inertial motion sensors are essentially single degree of
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freedom structures. An internal mass moves within a casing along a particular axis

(vertical, for pavement deflection devices). The internal mass displacement, velocity, or
acceleration relative to the external case generates an output signal that is processed and
recorded by a computer system (Graves and Drnevich, 1993). .
Most steady-state devices use velocity transducers (commonly called geophones)
and an automatic, electronic integrator to convert the velocity time history to a
displacement time history. Velocity transducers with integrators, rather than
displacement transducers, are commonly used because the output characteristics of most
displacement transducers are heavily frequency dependent, whereas velocity outputs are

frequency independent above a minimum frequency (Moore et al., 1978).

2.2.2 Pavement Deflection Response

In static loading systems, when the load is applied, the pavement deflects
proportionally to the applied load; when the load is removed, the pavement returns to the
same position (assuming the load is within the elastic range). The same principles apply
to dynamic loading. The oscillating load creates a maximum deflection when the
maximum load is applied, and the pavement rebounds as the load amplitude reaches a
minimum. Therefore, the amplitude of the dynamic deflection is proportional to the
dynamic force. In effect, the load on the pavement creates a vibration in the pavement
oscillating at the same frequency that the load is applied. The amplitude of the deflection
decreases as the distance between the load and the measurement location increases
because of material and radiation damping.

The deflection basins measured in a steady-state dynamic test are similar to the
deflections created by a static load. However, dynamic deflections are different because
the dynamic stiffness of the pavement system changes with the driving frequency. The
dynamic stiffness has been found to increase as the driving frequency increases. Thus,

smaller deflections are observed during higher frequency tests (Moore et al., 1978).
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2.2.3 Testing Equipment

ASTM 4695-87 (Standard Guide for General Pavement Deflection
Measurements) describes the general procedures for testing pavements with steady-state

dynamic devices.

2.2.3.1 Dynaflect

The Dynaflect consists of several deflection sensors and a motor that drives two
counter-rotating masses, mounted on a two-wheel trailer. The resulting dynamic load is
transferred to ﬁe pavement through two 101 mm (4 in) wide, 406 mm (16 in) outer-
diameter rubber-coated steel wheels spaced 504 mm (20 in) center to center. The
resulting pavement contact area is less than 2581 mm?® (4 in®). Figure 2-4 illustrates a
general schematic of the device and the typical loading configuration.

‘When the device stops at the test point, the sensors are lowered to the pavement
on a beam aligned with the axis of symmetry which passes between the wheels.
Geophones spaced 304.8 mm (12 in) apart record the deflections induced by the dynamic
force generator. The machine’s static load of 8 kN (1,800 Ib) is offset by the peak-to-
peak dynamic force of 4.4 kN (1,000 Ib) applied at a fixed frequency of 8 Hz.

The driver of the towing vehicle completely controls the Dynaflect via remote
console. The entire operation at each test site obtains 5 measurements within about two
minutes (Moore et al., 1978). Because the device is stationary during testing, traffic must

be controlled in the vicinity of the machine.

2.2.3.2 Road Rater

Several models of this instrument are available, but they all share certain common
features. First, a vibratory load is produced by a steel mass and hydraulically actuated
vibrator. The pavement is loaded through two 102 x 1788 mm (4 x 7 in) steel plates

spaced 267 mm (10.5 in) center to center, for a total contact area of 36,129 mm’ (56 inz).
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Figure 2-4. a) Schematic Illustration of the Dynaflect. b) Plan view of the loading and geophone
configuration.

Normally four geophones, spaced at 305 mm (12 in) along the symmetry axis
passing between the load plates, measure the deflections. Like the Dynaflect, these are
lowered to the pavement at each test location. Depending on the model, the Road Rater
can apply loads ranging between 8 and 22 kN (1,800 and 5,000 1b) at five different
frequencies, ranging between 10 and 40 Hz (Moore et al., 1978).

Tests are very fast, requiring less than a minute for one deflection measurement at
a pfeset driving ﬁequency. Like the Dynaflect, the Road Rater is operated by the driver

of the towing vehicle.

2.2.4 Application

Steady-state deflection testing devices overcome some of the problems with static

devices. The most important advance is the use of an inertial reference system for
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measuring deflections. As described in Section 2.2.1, very sensitive and accurate

accelerometers or velocity transducers indirectly measure deflections of the pavement
surface. Because a stationary local reference is not needed, the devices are much smaller,
lighter, and consequently more mobile. All this results in cost savings for highway
departments, allowing a smaller crew (1 person) to accomplish more measurements in
less time.

Even though steady-state testing devices aie a significant improvement over static
load devices, there are still problems with the test. First, moVing traffic does not load the
pavement sinusoidally like steady-state devices. Second, the équipment must be
stationary during the test, which requires routing traffic around the equipment. Third,
tests are only accomplished at finite locations, usually about every few hundred meters.
Therefore, a weak section could go undetected until significant surface distress was

recognized.

2.3  Transient (Impulse) Dynamic Load
The next generation of pavement testing devices, falling weight deflectometers,
attempt to overcome the single-frequency loading problem associated with steady-state

devices by loading the pavement with a single impulse force. -

2.3.1 General

All impact load devices, commonly referred to as falling weight deflectometers
(FWDs), produce a transient impulse load by dropping a known weight from a known
height onto a contact plate of known area and stiffness. Typically, the peak load and the
~induced vertical deflections are measured at points directly under the load and at different
distances from the load.

FWD loading systems are comprised of a force-generating device (falling weight),
guide system, loading plates, and load cell. The falling weight is mechanically raised to

one of several controlled heights and released. The guides ensure that the weight falls
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perpendicular to the pavement surface with negligible friction, and that the weight

strikes the plate in a controlled, repeatable manner. Load plates help to uniformly
distribute the load over a 305 to 457 mm (12 to 18 in) diameter area. They are generally
made of steel with a rubber coating on the bottom, which helps to condition and extend
the transient load shape. Additionally, the plates have a small opening in their centers to
allow for a deflection measuring device. The force pulse duration lasts between 20 and
60 milliseconds (ms) and can be approximately described by a haversine or half-sine
wave. This load shape more closely resembles the action of real traffic than either the
static or steady-state devices (Barksdale, 1971).

Deflection measurement sensors are generally mounted on a beam extending from
the load plate radially outward along the travel direction. Each particular testing model
may have different numbers and spacing of sensors. With some models, the sensor
locations may be adjusted, depending on the testing application. The sensors are
connected to an onboard computer system that records the peak vertical deflection at each
sensor location. Several types of sensors are used, including seismometers, velocity

transducers, and accelerometers.

2.3.2 Pavement Deflection Response
When the falling weight strikes the load plate, the surface of the pavement

deﬂects by an amplitude dependent on the stiffness of the entire pavement system. While
the deflection is occurring directly under the load plate, a deflection wave front is
emanating radially away from the load plate. As a result of radiation and material
damping, the amplitude of the pavement deflection decreases as the wave moves farther
from the load plate. For a given impulse force, a stiffer pavement will deflect less than a
softer pavement. Also, the speed at which the wave propagates away from the load plate
is a function of the material stiffness -- waves travel faster in stiffer systems.

As described in the previous section, FWDs have sensors that record the

deflection at several points on a line extending outward from the load plate. These
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sensors capture a time history of deflection at each point; however, typically only the

peak deflection is used for analysis. Plotted together, these peaks form a “static”
deflection basin. Close analysis of the time history of deflections shows that the peak
deflections do not occur simultaneously at all points. Rather, the peak occurs later at
each successive sensor. Thus, the “static” basin never truly exists during an FWD test.
This concept is more fully illustrated in Chapter 5. _

Once the “static” deflection basin is known, the same procedures used for static
and steady-state devices are used to analyze the data and determine layer moduli. That is,
correlations to basin measurements or backcalculation techniques are used, as described

in Section 2.1.2.

2.3.3 Testing Equipment
ASTM 4694-87 (Standard Test Method for Deflections with a Falling Weight

Type Impulse Load Device) describes the general testing procedures, apparatus, and data

acquisition systems applicable to transient dynamic load testing devices.

2.3.3.1 Dynatest 8000 Falliﬁg Weight Deﬂectometef.

Introduced in the early 80’s, this FWD device has the longest service record in the
United States. It is trailer mounted and remotely controlled by the driver of the towing
vehicle. The impulse load is delivered by dropping a hydraulically raised weight onto a
buffer/loading plate system. The loading plate is 300 mm (11.8 in) in diameter and is
comprised of a single piece of steel with a rubber pad on the bottom to help distribute the
load more evenly. Figure 2-5 illustrates the loading system.

Deflections are measured using 7 geophones located on a raise-lower bar
extending towards the towing vehicle from the load plate. An onboard computer records

the peak deflection or the entire time history of deflection for each sensor. The load pulse

duration is 25 to 30 ms, and the load magnitude can range between 7 and 125 kN (1,574
and 28,103 1b), depending on the drop height. |
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Up to eight individual drops at 4 different heights can be used in a single test

program. Like the steady-state devices, the Dynatest is automated and requires less than

two minutes at each test site.

2.3.3.2 KUAB 2M - Falling Weight Deflectometer (Model 8714)

The KUAB 2M, manufactured in Sweden, gives results similar to the Dynatest,
but loads and measures the pavement deflections in a very different way. The KUAB
uses a two-mass system, consisting o‘f a falling mass and a second mass-buffer system fo
create the impulse load, as illustrated in Figure 2-5. The two-mass system creates a more
reproducible load shape, and also approximately doubles the pulse duration (60 - 70 ms)
(Crovetti et al., 1989). The load plate is a 300 mm (11.8 in) diameter steel plate
segmented into four quadrants, each with a rubber pad. The four segments are equally
loaded, but the segmenting allows the plate to better conform to pavement surface

irregularities.

Falling Mass
\ Roller
Y’
Rubber
Buffers
[ L
Rigid U
Plate . Rubber Membrane g;eagtr:ented
- Dynatest 8000 . Kuas 2M

Figure 2-5. Schematic illustration of the loading mechanism used by two falling welght deﬂectometers
(after Crovetti et al., 1995).
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Rather than using geophones, the KUAB is equipped with seven seismometers

(deflection transducers) to measure the pavement displacements. The sensors are
mounted on a raise-lower bar that extends radially away from the towing vehicle.

Like the Dynatest, the KUAB 2M is fully automated, requiring just a few minutes
at each test site. Unlike the Dynatest, a virtually unlimited number of drops can be
programmed for each height in a testing sequence. Also, the testing device is completely
enclosed by a locking metal housing for protection from weather and road grime during

transportation.

2.3.4 Application

Falling weight deflectometers are widely used by state highway administrations
for pavement evaluation and overlay design. Often, the FWD testing program is used in
conjunction with a backcalculation program like EVERCALC, ILLI-PAVE , BISAR, or
WESDEF. These programs adjust layer stiffnesses until the predicted deflection basin
matches the measured “static” deflection basin. Maintenance decisions and rehabilitation
design are based on the layer stiffnesses determined by the FWD testing program.

Some researchers have developed methods for determining layer thickness along
with stiffness (Sivaneswaran et al., 1993). Additionally, more work is underway that uses
the entire time history of deflection for pavement analysis (Ketchum, 1993; Zaghloul et
al, 1994).

Although deflection analysis programs are now well-developed and produce
accurate, repeatable results, there are still two principle limitations to FWD testing. First,
the FWD must be completely stationary to perform each test. Therefore traffic control is
needed to keep traffic flowing around the machine. Second, although the FWD load
pulse is very similar to a rolling wheel passing over a stationary point, it is not exactly the
same. Coupled with analysis programs that only use peak “static” deflection basins, the

true dynamic response of the pavement is not well understood. In spite of the




21
disadvantages of the FWD, it remains far superior to earlier testing devices. As

backcalculation models become more refined, results will only improve.
2.4  Transient Surface Wave Analysis

2.4.1 General

| A fourth type of nondestructive testing called Spectral Analysis of Surface Waves
(SASW) can be used to determine the pavement system layer modulus and thickness.
Like falling weight deflectometers, SASW uses the results of deflection time hisfories at
discrete points due to an impulse load. However, instead of using deflection magnitudes,
the SASW method uses the phase difference in surface wave records to determine the
wave propagation velocity at various depths. When the velocity, V,; density, p, and
Poisson’s ratio, v, are known, the material modulus (a.k.a. stiffness), E, can be directly

calculated through the following basic relationships,

V;=\/§:>G=9Vf
p

E=2G(Q+v)=2pV (1+V)

where G is equal to the shear modulus.

Figure 2-5 schematically illustrates the basic components used in SASW testing.
The impulse source, ranging from a tack hammer to a 67 N (15 1b) sledge hammer
(depending on the distance to the geophones), impacts the pavement and generates a
group of Rayleigh waves (surface waves) emanating from the source at various
frequencies. The two vertically oriented receivers record the motion of the pavement as
the wave energy moves past them. The spectral analyzer quickly converts the time
history output from the receivers into a frequency domain response using a fast-Fourier
transformation (FFT). By analyzing the phase difference between the two receivers at
each frequency, the variation of Rayleigh wave velocity with wavelength is determined.

A plot of the surface wave velocity versus the wavelength is'called a dispersion curve.
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The dispersion curve is the “raw data” carried out of the field for in-house data

reduction (Nazarian and Stokoe, 1984). .

Dispersion curves are then converted to meaningful layer stiffness and thickness
informaf;ion by a process known as inversion. The earliest and least sophisticated
inversion processes simply assumed that the shear wave velocity was equal to 1.1 times
the Rayleigh wave velocity at the depth corresponding to one-half to one-third the
wavelength (Nazarian and Stokoe, 1984). In recent years, more sophisticated inversion
processes have been developed that model the pavement as a laminate of many individual
sublayers, each with (potentially) unique properties. Through an iterative process, a shear
wave velocity (of stiffness) for each sublayer is assumed, and a theoretical dispersion
curve is calculated. The theoretical curve and the measured curve are compared, and then
the shear wave velocity profile is adjusted until the two curves match, within a tolerable

€1Tor.

: Spectral Analyzer

Portable MicroComputer > =

L =2 O

o 2z O

. . '
Impulsive
Source -
7 Vertical . Vertical
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Figure 2-6. General configuration of SASW test (after Nazarian and Stokoe, 1989).
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The final shear wave velocity profile is converted to a stiffness profile by

assuming a Poisson’s ratio and mass density for each layer, and using the formula:
E=2G(1+v)=2pV} (1 +v)
The stiffness profile is next examined to determine layer thicknesses. The
boundary between separate layers is indicated by a sharp contrast in stiffness. Thus, if

two adjacent sublayers have very similar stiffnesses, they can be considered as one layer

(Nazarian and Stokoe, 1989).

- 2.4.2 Pavement Deflection Response

As established in the previous section, SASW tests derive all of their information
from the propagation of surface waves over a broad range of frequencies. If the SASW
test were conducted on a homogeneous, isotropic, elastic halfspace, only one frequency
would be needed for testing, because the surface wave velocity would be constant for all
frequencies. However, because pavement layer properties vary with depth, the surface
wave is dispersive; i.e. its velocity changes with frequency. YThus, to determine the
variation of stiffness from the pavemenf surface down through the subgrade, tésts must be
conducted using very high (tack hammer) to very low (sledge hammer) impulse
frequencies.

In theory, all frequencies should be recorded with a single impact. However, in

| practice, certain receiver spacings and impulse loadings work best to develop a quality

profile. Nazarian and Stokoe (1989) describe a common receiver midpoint (CMRP) array
that is most appropriate for analyzing pavement layers. Forward and reverse profiles are
conducted with each configuration to reduce data scatter. Figure 2-7 illustrates the source

and receiver arrangement for the CMRP array.

2.4.3 Testing Equipment
The field equipment required for SASW testing basically consists of three

components: a source, two (or more) receivers, and a recording/analyzing device.
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Sources used in SASW testing must be capable of generating surface waves

containing a wide range of frequencies. Because small hammers generate predominantly.
high frequency waves and large hammers generate predominantly low frequency waves, a
combination of hammers is often used for the entire series of tests at one site. Extremely
high frequency waves (over 20 kHz) must be generated to examine the upper few
centimeters of pavement; pulsating crystals have been successfully used for this purpose
(Nazarian and Stokoe, 1989). Very small impulse sources can be used when the sensors
are close together because the deflection amplitude is not used for SASW testing, only
the phase lag between receivers is important.

Receivers are selected depending on the frequency of interest. Accelerometers are
better at capturing higher frequency waves (over 500 Hz), and geophones (velocity
transducers) work better for lower frequency waves (less than 500 Hz), (Nazarian and

Stokoe, 1989).

Distance, ft
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Figure 2-7. Schematic of CMRP arrangement for SASW testing (after Nazarian and
Stokoe, 1989).




25
A spectral analyzer and microcomputer are used to analyze and record the

measured data. The spectral analyzer automatically digitizes the time-domain signal, and
using a fast-Fourier transform, converts the signal to the frequency domain. Next the
cross-power spectrum and coherence functions are generated and used to create a field
dispersion curve. The cross-power spectrum is a way to view the surface wave phase lag
as a function of frequency. It is used to determine the surface wave velocity and
wavelength. The coherence function simply determines the range of frequencies over
which the analyzed signal is coherent, i.e. reasonable and accurate (Nazarian and Stokoe,
1989).

Automated SASW testing devices are still in the developmental stage, and as
such, single-unit commercial testing devices are not available. Without automation, a
team of technicians requires 20 to 40 minutes to run the complete series of tests at one
site. Thus, the method is not considered economically feasible for general applications

until it can be automated.

2.4.4 Application

The SASW method is not as fast as the previously described nondestructive test
~ methods, but it does offer three distinct .advantages over those test methods.

First, layer thicknesses can be determined directly from the testing. With
deflection-based testing and analysis (except for a few advanced backcalculation
techniques), layer thicknesses are assumed based on construction drawings, or core
samples are drilled to determine precise thicknesses.

Second, the variation of moduli within the subgrade can be determined. Other
tests treat the entire subgrade as a single layer with constant modulus. This plays a
particularly important role when tﬁere is a rigid layer (bedrock) near the pavement
surface. Also, deflection-based testing must assume the depth to the rigid layer, whereas
SASW testing can determine the depth and the modulus of the rigid layer (Nazarian and
Stokoe, 1989).
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Third, the modulus of thin layers at the pavement surface can be accurately

determined. Large variations in thin layer stiffness may only slightly change the shape of
a deflection basin, but the SASW method can easily locate and determine the modulus of

thin layers.

2.5  Rolling Wheel Load

The newest type of device developed for pavement testing loads the pavement
with a rolling wheel and uses sensors to continuously measuré deflections. Though
several loading and measuring schemes exist, one common advantage for all the devices
is that a continuous deflection profile is produced. Thus, small weak zones can be easily
identified. This section describes the operation and testing of two different rolling

deflectometers.

2.5.1 Testing Equipment

Rolling weight deflectometers are still in the developmental stage and are not yet
commercially available. However, some prototypes have been constructed. Two models
are described here. Each loads the p_avement and measures the deflections using very

different methods.

2.5.1.1 SNRA Rolling Weight Deflectometer

The Swedish National Road Administration (SNRA) began developing a rolling
weight deflectometer (RWD) in thé 1980’s, and built its first prototype in 1991 (Arnberg
etal., 1991). The testing device consists of a heavy truck with two transverse laser
profilometers. The profilometers were originally developed for measuring surface
roughness, but in this case were used to measure deflections.

As illustrated in Figure 2-8, the first profilometer is mounted a few feet behind the
lightly loaded front axle. It measures the undeflected shape of the pavement surface. The

second profilometer is mounted immediately behind the heavily-loaded rear axle and
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measures the deflected shape of the pavement. The difference between the two profiles

represents the deflections caused by the loaded axle.

[T\

Undeflected

|Sensor
\

Deflected

I |Sensor
\

Figure 2-8. Schematic representation of the SNRA Rolling Weight Deflectometer.

Preliminary tests with the prototype indicated that the measured deflections were
very repeatable over the same pavement segment. Tests conducted at 10, 30 and 50
km/hr (6, 19, and 31 mph) showed that deflections markedly decreased as the vehicle
speed increased: Comparisons between the RWD and the FWD maximum deflections
(directly behind the wheel and under the load plate) showed reasonable agreement for
wheelA velocities of 5 km/hr. Errors were attributed to the differences betwéen the

dynamics of the two tests.

2.5.1.2 UT Rolling Dynamic Deflectometer
Bay et al. (1995) describe a rolling dynamic deflectometer (RDD) constructed at

the University of Texas at Austin that applies a dynamic load to the pavement through
two wheels mounted midway between the front and read axles (Figure 2-9). The load is
applied by a servo-hydraulic vibrator and can generate dynamic vertical forces as large as

310 kN (70,000 Ib). The servo-hydraulic vibrator can generate a variety of dynamic
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loading functions, including transient (like the FWD) and steady-state (ranging from 5

to 100 Hz). The test can be conducted at speeds between 4 and 6 km/hr (2 and 4 mph).

.The resulting deflections are measured by an isolated pair of wheels resting on the
pavement directly between the loading wheels. An accelerometer records the vertical
motion of the wheels to generate a continuous motion profile. After some data |

processing, a continuous record of pavement flexibility can be constructed.

Engine and Pump for
Servo-Hydraulic

. Exciter
Reaction \
Mass

Tsolated Support for ! Receiver - Dual, High Capacity
- Receiver Wheel Wheel Loading Wheels

Figure 2-9. Schematic representation of the UT Rolling Dynamic Deflectometer (after Bay et al.,
1995). '

Tests have been completed with the RDD on eight flexible pavement sections.
The results showed that the test is particularly good for identifying weak segments within
a generally sound pavement section. Comparisons between the RDD and FWD found
that the tests show similar deflection to load trends, but that more work is necessary to

fully understand the relationship between the two tests (Bay et al., 1995).
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2.5.2 Application

" Rolling deflectometers show real promise for future use in pavement analysis.
Three aspects stand out as significant advantages of rolling load testing. First, the tests
are conducted while in motion, so traffic control around the equipment is easier, and user
(highway travelers) costs are lower. In the case of the SNRA device, high speed testing
(up to 90 km/hr (56 mph)) may make the tests completely transparent to the user.
Second, the testing generates a continuous pavement profile. This helps to identify weak
segments of the road that may be missed by conventional stationary tests. Third, for the
SNRA Rolling Weight Deflectometer the applied load exactly matches traffic loading.
This solves a problem that has plagued all of the other testing devices.

However, there are still several significant problems to overcome before rolling
deflectometers will be fully operational. First, the measurement system must be
improved to ensure accurate measurements at reasonable speeds. The RDD sensor wheel
will likely not perform well at even moderate speeds, and the laser sensors used by the
RWD can be adversely effected by moisture on the pavement or a coarse, open-grained
surface. Also, accurately defining the undeflected datum is difficult because of small
movements in the beam to which the sensors are attached. A precisely defined datum is
essential because the amplitude of the measured deflections is very small (< 1 mm).

| Second, dynamic interpretation models for rolling load tests are not well-
developed. As previously described, the dynamic aspects of FWD tests are frequently
ignored so that backcalculation can be accomplished more quickly. Rolling loads add an
extra level of complexity to the stationary dynamic load model, and cause computation
times to increase even more. At this time, models that accurately predict the deflection

basin caused by a rolling wheel on a layered pavement system do not exist.



Chapter 3
FLEXIBLE PAVEMENT DEFLECTION MODELS

Pavement deflection models attempt to answer the question: What is the deflection
(or stress or strain) at location A, when a load is applied at location B? Many
possibilities exist for both the locations and types of loads that may be of interest. For
example, a load could be located at the surface or within a pavement layer, and the
response of interest could be horizontal, vertical, or rotational deflections. Also, applied
loads could be static or dynamic over time, horizontal, vertical, or torsional in direction,
and applied to a disk, ring, or square plate.

Ideally, the deflection model would be developed to match the loading conditions
exactly. Inevitably, certain assumptions must be made to simplify the model and
facilitate easier (or more rapid) calculations. For example, as mentioned in Chapter 2,
static deflection models are routinely used to interpret data measured by dynamic tests.
Unfavorable consequences may result from this type of oversimplification. This chapter
describes some flexible pavement deflection models that have been developed, and

emphasizes the inherent assumptions of these models.

3.1 Static Models

Static deflection models predict the response resulting from a static load applied to
a known area on a given medium. The level of complexity of these models is determined
by the number of layers in the loaded medium, the stress-strain characteristics of the
materials in the medium (linear elastic or non-linear elastic), and the type of interface
conditions between individual layers (frictionless or fully-frictional).

In 1885, Boussinesq developed the first solutions for deflections due to a point load
applied to the surface of a homogeneous linear elastic halfspace. His solutions were
extended to include deflections due to loaded areas, such as disks, by integrating over the
loaded area.

The next advancement in static deflections occurred in 1943, when Burmister

published his solution for displacements in a two-layered system (a finite layer over a
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homogeneous halfspace). This allowed pavement analysts to model the asphalt layer

separately from the underlying base and subgrade. Burmister later refined his solution to
allow for a frictionless (1945a) or fully-frictional (1945b) interface between layers, and
fora three-‘layered system (1945c¢). At that point, pavement analysts could finally separate
a pavement system into its three primary layers: asphalt concrete, base course, and
subgrade.
Linear elastic static loading models, such as Burmister’s, make the following
. assumptions about layered systems (after Huang, 1993). A generalized pavement profile

is illustrated in Figure 3-1.

1. Each layer is homogeneous, isotropic, and linearly elastic with modulus, E,

and Poisson’s ratio, v.

2. The material is weightless and infinite in areal extent.

3. Each layer has a finite thickness, 4, but the lowest layer is infinite in

thickness. |

4. A uniform pressure, g, is applied on the surface of the pavement over a

circular area of radius a.

5. Continuity equations are satisfied at layer interfaces, as indicated by the same

vertical stress, shear stress, vertical displacement, and radial displacement.

‘&Za%‘
[T

Layer 1 E;, v, hy

Layer 2 E,, V2 hy

Layern E, V. 0

Figure 3-1. Illustration of an n-layer system subjected to a disk load (after Huang,
1993).
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The first assumption, which states that all materials are linear elastic, is a very important
feature of these models. The linear aspect allows the use of superposition to calculate
deflections caused by multiple loads. For example, the deflection at the midpoint |
between two equally loaded tires is equal to twice the magnitude of deflection at fhe same
distance from a single tire. The elastic portion of the assumption recognizes that moving
traffic loads cause small deformations that are recoverable, even though subgrade soils do
not behave elastically when subjected to large, stationary loads (Huang, 1993).

These assumptions can be applied to a multi-layered system, and with the use of
computers, programs have been developed that quickly solve for stresses, strains, and
displacements on the surface and within the pavement system (Huang, 1993). ELSYMS,
KENLAYER, WESLEA, BISAR, and EVERSTRESS all use layered linear elastic theory
to solve the static load problem.

Non-linear elastic models recognize that pavement system materials, especially
subgrade soils, do not have a constant modulus as stresses and strains increase. Non-
linear models require knowledge of a soil’s constitutive relationship (Huang, 1993),
which, in the simplest case, relates the stiffness of a soil element to its state of stress.
When a pavement system is modeled as a combination of many small elements, a
constitutive relationship allows the moduli to be adjusted for each element within a soil
layer, depending on the overburden and applied stress.

Chang et al. (1992) studied the potential for non-linear behavior in the FWD test.
By varying the applied loads at a single site, the deflection behavior was obtained. Chang
et al. determined that non-linearities were especially pronounced where the subgrade was
soft or the asphalt pavement was relatively thin. In these cases, non-linear effects
increased peak deflections by as much as 50% under very heavy FWD loads (88.96 kN
(20,000 Ib)). However, deflections more than 3 ft away from the load plate were nearly
unchanged.

Several computer programs have been developed to model the noﬁ-linear behavior

of multi-layered systems. MICH-PAVE, developed at Michigan State University, and
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- ILLI-PAVE, developed at the University of Illinois, both use finite element methods to

calculate stresses, strains, and deflections due to static loads on non-linear pavement

systems.

3.2 Dynamic Models

Many pavement analysts use static models to interpret the data obtained from
dynamic tests, such as the FWD or Road Rater. Although this practice is common,
certain conditions can result in gross misinterpretation of the data. For example, Roesset
and Shao (1985) concluded that a static interpretation of Dynaflect (steady-state dynamic
load) deflections, when thie soil is underlain by a stiff layer (bedrock) at depths of less
than 60 feet, can result in substantial errors (up to 70%) in pavement layer moduli. The
eITors were aﬁributed to dynamic amplifications at certain loading frequencies. Dynamic
effects are not as pronounced in FWD tests because the impact load excites a broad range
of frequencies. However, the AC moduli still could be underpredicted by as much as
40% when the FWD dynamic response is not considered.

This section describes dynamic deflection models that use a variety of mathematical
technidues. First, models that consider a dynamic load applied at one location are

explained. Next, moving load models are described.

3.2.1 Stationary L.oad Models

In this thesis, dynamic stationary load models refer to those in which the load is
applied at the same location on a pavement throughout the duration of loading. Dynamic

steady-state and FWD tests both fall into this category.

3.2.1.1 Linear-Elastic Dynamic Models |
Determining the response of a soil deposit to dynamic loading, whether caused by
explosions, moving traffic, or earthquakes, falls into the mathematical realm of wave
propagation. In 1904, Lamb first published the solution for waves passing through an
elastic halfspace (Meier, 1995). Thomson (1950) was the first to develop the solution for



34
waves passing through a layered halfspace. Thomson’s solution used matrices that

linearly related stresses at the top of a layer to the stresses at the bottom, and ensured that

particle velocities at the bottom of one layer were identical to those at the top of the

underlying layer. Using Thomson’s method, the stresses at the tdp or bottom of any layer

could be related to the stresses at the surface. ‘
Haskell (1953) usgd Thomson’s matrix formulation to generate the phase velocity

dispersion equations for elastic surface waves (Rayleigh and Love waves) through a !

multi-layered halfspace. Haskell also corrected an error in Thomson’s derivation, thus

his results produced what is now called the Haskell-Thomson transfer matrix method

(Meier, 1995). }
Kausel and Roesset (1981) used the Haskell-Thomson transfer matrix approach to :

derive layer stiffness matrices that relate applied loads to displacements. The stiffness

matrix solution is not more general than the Haskell-Thomson transfer matrix approach,

but it is more efficient for numerical integration. When layer thicknesses are small |

compared to the wavelengths of interest, the transcendental functions which govern

vertical displacements can be linearized. Algebraic functions then replace the

transcendental functions, and the eigenvalue problems for wave propagation can be

solved by standard techniques. This results in significant gains in computational

. efficiency.

Using this stiffness matrix approach, Kausel and Peek (1982) developed an explicit,
closed-form solution for functions (Green’s functions - described in Chapter 4) that relate
displacements in a layered strata to unit harmonic loads. Solutions were developed for
several loading schemes including vertical disk loads, horizontal point loads, tors1onal

| ring loads, and other permutations of load dlrectlon and areas. Kausel created a computer
program called PUNCH, that uses this method of calculating the Green functions.
PUNCH has been used by several researchers to develop dynamic pavement deflection
models.

Davies and Mamlouk (1985) studied deflection basins generated by dynamic

steady-state testing devices, and concluded that the basins were substantially different
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than those produced by static loads. The application of static deflection analyses

applied to dynamically produced basins may yield misleading results if the operating
frequency is close to the resonant frequency of the pavement system. Other fesearches
have studied the influence of a rigid layer (bedrock) at a shallow depth (less than 60 ft) on
deflection basins. Roesset and Shao (1985) showed that static analysis of the basin
produced by steady-state (Dynaflect) and transient (FWD) dynamic loads can lead to
large errors in backcalculated layer moduli.

Sanchez-Salinero (1987) used PUNCH to model waves produced during seismic
testing of soils. After conducting a series of parametric studies, he developed rules for
discretizing a layered system to yield the most accurate solution. |

Ketchum (1993) developed a dynamic model that uses PUNCH to interpret FWD
tests on airport pavements. He focused on the effects of a frozen layer at shallow depth
on the dynamic response of pavements, and was able to formulate a backcalculation |
procedure to determine layer moduli. Ketchum found that pavements c;)uld exhibit a
significant resonant amplification at certain frequencfes when a rigid layer is at a shallow
depth. |

To generate dynarhic deflection basins for training a neural network backcalculation
scheme, Meier (1995) used Sanchez-Salinero’s version of PUNCH. He optimized the
code to calculate only vertical deflections due to a vertical disk load, and added a
subroutine that automatically discretized the pavement layers into properly-sized

sublayers.

3.2.1.2 Viscoelastic Dynamic Models

Asphalt concrete is considered a viscoelastic material. That is, the stréSs in the
asphalt is a function of the strain and the strain rate. Viscoelastic materials are often
represented in models by a linked combination of a linear spring and dashpot -- the stress
in the spring is directly proportional to the strain, whereas the stress in the dashpot is
proportional to the strain rate. For exémple, the Maxwell model, illustrated in Figure 3-2,

is represented by a spring and dashpot in series. For a constant applied stress, an
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instantaneous elastic extension of the spring occurs. At the same time, the dashpot

begins to extend, and over a period of time the strain will steadily increase (Haddad,

1995).
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Figure 3-2. Illustration of the properties of a viscoelastic Maxwell model (after Haddad,
1995). :

Because FWD and moving wheel loads are inherently time-dependent loads, it is
logical to build a viscoelastic model to predict deflections. For example, KENLAYER
has the option to consider dynamic loads by assigning viscoelastic properties to each
layer (Huang, 1993). SAPSI, developed at the University of California at Berkeley, uses
the finite element method with viscoelastic properties to calculate deflection responses

resulting from multiple dynamic surface loads (Chatti et al., 1995).

3.2.2 Rolling L.oad Models

Relatively few models have been created to predict the displacements from a

moving load on a pavement system. Huang (1993) describes viscoelastic models using
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KENLAYER and VESYS to predict the time history of deflection at.a single location

as the wheel passes over it. For these models, a series of individual loads are applied to
the point at each time increment. The amplitude of each point load increases and
decreases following the pattern of a haversine. The duration of the combined pulse is
dependent on the speed of the vehicle and the tire contact area.

An alternative approach that is particularly applicable to railroads is to ﬁeat the
asphalt surface layer as a beam fully supported by an elastic or viscoelastic foundation.
Achenbach and Sun (1965) used a viscoelastic model to study the dynamic response of a
beam resultihg from a rapidly moving load. Holder and Michalopoulos (1977)
investigated the response of a beam supported by a Winkler-type elastic foundation with
inertia (i.e. not massless) and damping subjected to a moving load. Steady-state solutions
for beam deflections were developed; that is, the deflections an observer moving with the -
load would see. |

Trochanis et al. (1987) predicted the beam-foundation contact pressure, beam
deflection, and bending moment resulting from a moving, oscillating load (train wheel
set) on a fully-supported beam. The system was modeled as an infinitely long beam
supported by an arbitrary linear-elastic, damped foundation. The model showed that for a

moving load, the maximum deflection occurs slightly behind the wheel, as illustrated in

Figure 3-3.
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Figure 3-3. Static and dynamic deflections resulting from a rolling wheel load (Trochanis et al., 1987).



Chapter 4
DYNAMIC LAYERED ELASTIC ANALYSIS USING GREEN’S FUNCTIONS

The previous chapter described a number of different types of pavement
deflection models. This chapter will focus on one particular type -- a dynamic layered
elastic model. In this research, a dynamic layered elastic model was developed using the
Green’s function approach. This chapter describes the Green’s function concept,

applications, and the specific solutions developed for this project.

4.1 Green’s Functions

A Green’s function is a mathematical tool tﬁat can be used to find solutions to
many boundary value problems associated with either ordinary or partial differential
equations. The Green’s function concept was first introduced by G. Green in 1828, but
its use as a practical analysis tool did not begin to develop until the middle of this century
(Roach, 1970). The Green’s function itself is unique for each problem and set of
boundary conditions. However, once the Green’s function is determined, it reduces the
, solution to an integral equation with boundary conditions, rather than a differential
equation. For numerical analysis, the integral forrh is easier to solve than the differential
equation (Roach, 1970).

The Green’s function approach has been applied to many practical applications in
engineering. For example, Roach (1970) used Green’s functions to solve boundary value
problems associated with the wave equation and the diffusion equation. Trim (1990)
described the use of Green’s functions to find the displacement in a horizontal, taut string
that is fixed at one end while the other end is moved harmonically in the vertical
direction.

Hartzell (1978) described a Green’s function approach for predicting earthquake
ground motion. An earthquake was modeled as a series of point ruptures on a fault zone.
A total éarthquaké motion was produced by superimposing the phase-delayed ground
motion resulting from each point rupture. Hartzell scaled previously recorded aftershdcks

(small tremors) to serve as the response at each point source -- these small motions are
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empirical Green’s functions. The Green’s function method of dividing a large problem

into the sum of smaller, easier to solve problems is a common feature of Green’s function

analyses, and was employed in this thesis.

4.2 Dynamic Layered Elastic Model using Green’s Functions

In this research, the Green’s function can be viewed as a simple transfer function,

G(®; R), that relates displacements, U(®; R), to load, P(®,).

U(oai, R)= G((o i R)* P(co ,.)
Combining the displacements at all frequencies produces the desired displacement time
history.

490

U)- 366, R) 7))
This formulation was used to build a pavement deflection model, which was coded into
the computer program BASIN.

The following sections describe the manner in which the Green’s functions
approach was applied in BASIN. First, conversion from the time domain to the
frequency domain for the analysis of transient loads and responses is described. Next, the
generalized method for calculating the elastodynamic Green’s functions is explained.
Finally, the last sections illustrate the schemes used to represent both FWD and rolling

wheel loads.

4.2.1 Frequency Domain Analysis
As mentioned in Chapter 3, the Green’s functions solved by Kausel and Peek

(1982) describe the harmonic deflections produced by steady-state harmonic unit loads.
To use these Green’s functions for calculating deflections resulting from transient loads,
the transient load must be represented in the frequency domain as a combination of
harmonic loads of different amplitude, phase, and frequency. This transformation and

combination approach is commonly known as Fourier superposition analysis.
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Figure 4-1 illustrates a general schematic for analysis in the frequency domain.

In the first step, the load time history is discretized into individual points spaced at a
constant time interval. The discretized loading is then decomposed into the sum of a
series of simple harmonic loads using a discrete Fourier transform. The Green’s
functions are then solved to determine the amplitude and phase of harmonic displacement
resulting from a unit load at each frequency. Next, the Green’s functions are multiplied
by the Fourier series of the loading to determine the Fourier series of the pavement
deflection. Finally, the sum of the harmonic responses are transformed back into the time
domain by an inverse discrete Fourier transform. This method of superimposing the

harmonic responses is only valid for linear-elastic materials.

4.2.2 Green’s Function Solution

As described previously, an explicit, closed-form solution for the Green’s
functions corresponding to dynamic loads acting on layered strata was used to build the
pavement deflection model BASIN. This section very briefly summarizes the general
solution process. The complete derivation can be found in Kausel and Peek (1982).
Additionally, an excellent overview is given by Meier (1995).

The solution developed by Kausel and Peek (1982) uses the following steps to
solve for harmonic displacements in a layered strata. First, the stiffness matrix for each
layer must be computed. Each stiffness matrix is a function of the material properties and
thickness of the layer. Additionally, the equation for the stiffness matrix is dependent on
the loading frequency and wave number. The wave number is obtained by a spatial
Fourier transformation of the loadihg function (this is analogous to a time-dependent
function transformed into the frequency domain) and is used to include the distance
between the loaded area and the observation point as part of the solution. A global

stiffness matrix, K, is obtained by overlapping the individual layer matrices at their layer
interfaces. The global stiffness matrix relates the displacements, U to the loads, P, i.e.

P=KU
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Figure 4-1. Schematic illustration of Fourier superposition analysis using Green’s functions (after Kramer,
1996).

By formally inverting the stiffness matrix, an expression that solves directly for the

displacements is found,

U=K'P=FP
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where, F=K", represents the flexibility matrix. After the flexibility matrix is

established, it is multiplied by the loading vector to calculate the displacements.

Kausel and Peek (1982) developed solutions for the displacements produced by
several types of loading. Displacements, in cylindrical coordinates, are calculated in the
vertical, radial, and tangential directions. Loads can be applied horizontally or vertically

to a disk, ring or point; additionally, torsional and rocking loads are solved.

4.2.3 FWD Load Representation
The load pulse produced by an FWD was developed to approximate the deflection

pulse produced by a moving truck load (Hoffman and Thomson, 1982). Barksdale (1971)
reported the actual load pulse caused by a moving wheel closely resembled a haversine,
illustrated in Figure 4-2. Example pulses from several FWD devices are shown in Figure
4-3. The shape and duration of the pulse are controlled by the mass, height of drop, and
buffer system stiffness.

Load Wheel Load

—————————— Equivalent Sinusoidal

Pulse
[

t 1 Time
I 3

Figure 4-2. Typical wheel load applied by a moving truck
(Barksdale, 1971).

For dynamic analysis of pavement systems, it is computationally easier to model
the load as a smooth function. The level of agreement between these functions and the

“real” load shapes are most easily distinguished when the loads are represented in the
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frequency domain. Figure 4-4 shows time-domain loading and the Fourier amplitude

spectrum for a triangle, haversine and real pulse, all with equal peak amplitude and
duration. Because of its sharp peak and straight sides, the triangular pulse has more
energy in the 100 to 200 Hz range than the haversine or measured pulse (Meier, 1995).
Huang (1993) and Ong et al. (1991) suggested that the ideal approximating shape is a
haversine -- that shape was used for all analyses in this project. There is an additional
benefit to using a haversine rather than a triangular pulse in this project. Because the
haversine function has less high frequency energy than the triangular wave, a smaller
number of discrete frequencies are necessary to accurately define the load. The upper
bound of the range of frequencies used to characterize the loading is called the cutoff
Jrequency - i.e. energy at frequencies higher than the cutoff is neglected. The range of
frequencies between 0 Hz (static) and the cutoff frequency is also known as the
bandwidth. Because GREEN calculates a solution for each frequency of interest, a lower
cutoff frequency requires less computation time to determine the response to the
haversine loading.

Meier (1995) showed that a haversine constructed to match impulse and duration
of a measured pulse also matched over the range of 0-75 Hz in the frequency domain
(Figure 4-5). Differences are apparent at frequencies above 75 Hz, but the amplitudes are
very small relative to those at lower frequencies.

Because computational times for GREEN increase in direct proportion to the
number of frequencies needed to represent the loading pulse, it is desirable to minimize
the cutoff frequency and maximize the increment between frequencies. To examine the
effects of limiting the cutoff frequency, a FFT was performed on a 1024-point time
record with a 30 msec (60 point) haversine pulse at the beginning. The 30 msec duration
was selected as typical for FWD tests. The total frequency range for this record was 0 to
996.45 Hz, with 511 discrete frequencies spaced at 1.95 Hz. To limit computation time
the cutoff frequency was set at 76.05 Hz, therefore only the first 40 discrete frequencies
were used. An inverse FFT on the cutoff (or bandwidth-limited) spectrum was then used

to convert the record back to the time domain. Figure 4-6 shows that there is virtually no
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difference between the original and bandwidth-limited pulses. Meier (1995) produced

similar results using frequencies below 75.47 Hz with a 2.36 Hz interval. Section 7.2.2

describes the sensitivity of the deflection basin to the cutoff frequency and shows that this

bandwidth is acceptable for accurately calculating deflection basins.
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Figure 4-3. Typical load pulses for four different FWD devices (Bentson et al., 1989).
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Figure 4-5. Fourier amplitude spectra for average measured load pulse and adjusted haversine
approximation (Meier, 1995).

4.2.4 Rolling Wheel Load Representation
To model the load applied by a rolling wheel, it is necessary to develop a method

that can approximate a moving load applied over time and space. Ideally, the load would
be represented by a sequence of infinitesimally-spaced point loads. However, this is
computationally impossible. Instead the line load can be achieved by discretizing the
load into a series of pulses, such that the combination of pulses approximates the desired
load in time and space.

Four components of the individual pulses must be considered to develop the
rolling wheel representation: the area on which the load is applied, the shape of

individual load pulses, the duration of each pulse, and the spacing between each pulse.
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Figure 4-6. Original and bandwidth-limited haversine load pulses (after Meier, 1995).

4.2.4.1 Loaded Area

The loaded area was modeled as a circle with a radius that is a function of the tire
pressure and applied load. For example, a radial tire inflated to 620.6 kPa (90 psi)
carrying a load of 30,000 N (6,745 1b) has a contact area of 48,387 mm” (75 in%). A

circular disk with this area would have a radius of 120 mm (4.7 in).

4.2.42 Load Pulse Shape

Figure 4-7 illustrates the manner in which symmetrical load pulses can be applied
in succession to approximate a moving point load of constant amplitude. In this figure,
each individual pulse has a small amplitude with a 0.1 sec duration, and is represented by
a dashed line. The bold line above the individual pulses is calculated by summing the
load contribution of each pulse at each time increment. From this figure, it is clear that a

simple, symmetrical function is most desirable for modeling the load pulse. For reasons
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previously described, a haversine was selected as the standard load pulse shape for

modeling moving loads.

Load Load Load
5 . 5 5

] " 0
.15 0.2 0.25 [} 0.05 0.1 0.15 0.2 0.25
Time Time

Figure 4-7. Illustration of method for combining different load pulse shapes to achieve a common line
load.

4.2.4.3 Load Pulse Duration

The duration of the load pulse from a moving wheel influences the nature of the
pavement deflections. Two alternatives were examined in the selection of an appropriate
load pulse duration.

Barksdale (1971) developed a chart for approximating the duration of applied load
for trucks moving at several speeds, ranging from 1 to 45 mph, illustrated in Figure 4-8.
The charts were derived from an elastic finite element model using linear elastic
elements. Barksdale’s chart was generalized to calculate stress pulse times at all depths
beneath a pavement surface. However, for this project, only the pulse duration at the
pavement surface is of interest. For a vehicle speed of 50 km/hr (31 mph), Barksdale
predicts a 30 msec pulse duration.

Alternatively, the duration could be decided by the length of time that the tire is in
contact with one point on the pavement surface at a specific speed. Continuing with the
example begun in Section 4.2.4.1, if the wheel were rolling at 50 km/hr = 13.89 m/s, then
the time that the tire is in contact with any given point can be calculated as follows.

‘o Diameter  0.24m

- fer _ = 0.0173sec = 17 3msec
Velocity  13.89m/
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With this scheme the pulse duration changes when the speed, tire pressure, or load

changes.
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Figure 4-8. Variation of equivalent principal stress pulse time with vehicle
velocity and depth (Barksdale, 1971).

For the prototype model which only allows constant load and velocity, the pulse
durations reported by Barksdale (1971) are used. Improved algorithms that allow
variable load and velocity could conceivably use a scheme to automatically calculate the
pulse duration based on the tire contact duration.

For the selected pulse duration, a constant line load can be achieved by adjusting

the amplitude of each individual pulse, as illustrated by Figure 4-9.
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Figure 4-9. Illustration of method for using different load pulse duration and amplitude to achieve a
common line load.

4.2.4.4 Load Pulse Spacing

The final component of the rolling load model is the spacing between individual
load pulses. The same line load can be achieved with different spacing between pulses of
the same duration, but different magnitude, as illustrated by Figure 4-9. Individual load
pulses are represented by thin, dashed lines. The bold line illustrates the total applied
load, and is equal to the sum of the pulses at each time increment. In each case, the

amplitude of an individual pulse is calculated using the following formula:

2 * Pulse Spacing

Pulse Amplitude = Line Load Magnitude *
ulse Amphtude = Line Load Magmtude Pulse Duration

To improve required computation time, a minimum number of pulses are
desirable. However, the spacing between pulses has a significant impact on the
calculated deflections. Increasing the load pulse spacing necessarily increased the
distance traveled by the wheel between load pulses. Therefore, deflection responses from
more widely-spaced pulses contribute to the total deflection. As the load pulse spacing
increases, the model less closely approximates a moving wheel as a sequence of

infinitesimally-spaced point loads. Chapter 5 more completely describes this concept,
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and Chapter 7 contains the details of a parametric study that determined the optimum

spacing between load pulses.
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Figure 4-10. Illustration of method for using different load pulse amplitude and spacing to achieve a
common line load.




Chapter 5
BASIN CONCEPTUAL DEVELOPMENT

This chapter describes an approach developed to compute deflection basins using
Green’s functions. Initially, a simple, simulated deflection response function was used in
place of the Green’s function to develop the logic process for deflection basin
calculations. After the basic logic had been developed and verified, the complex-valued
Green’s function response solved by Kausel and Peek (1982) was used to compute
deflection basins for layered elastic systems. This final program was coded in the

program BASIN.

5.1 Algorithm Development

The algorithm for computing deflection basins was developed by working through
several loading/observation scenarios -- from simple FWD loading to complex, dual
rolling wheel loading. Initially, a simple deflection response function was developed to
simulate the time history of deflection due to a unit impulse load at a given distance from
an observation point. This simple function was used to develop the logic for computing
observation point deflections caused by time-varying loads from both stationary and
moving sources. This section presents the general concepts used to compute deflections

using a Green’s function approach.

5.1.1 Simulated Green’s Function

A simulated Green’s function response to a unit impulse load was developed as a
function of time and distance from the impact point. The function was designed so that
the deflections observed at nearby observation points would arrive quickly and with large
amplitude. Responses farther from the load would arrive later and with smaller amplitude
to simulate the effects of radiation and material damping. Additionally, a small
amplitude, low frequency, transient vibrating response was included in the simulated
deflection response. This generates a small rebound (positive deflection) after the initial

deflection at small measurement distances from the load.
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The function developed for the simulated deflection, D(R, T), was manipulated

to produce a plausible response shape (i.e. coefficients were added and adjusted until the
shape looked reasonable). The deflection, D, is a function of time, T, and distance, R, and

is of the form:
D(R,T)y=e T *C*(a*b+e X * Asin(oT))

where: C=e 0% ———1———
R

I+—

40

with  p=0.001+ (—;—] *300

m=25
V., = 48000

with ¢=02+ (5 + Rﬂ’sj *500

m Z

n=45
j= 11
1+ R
80
K=15 ; Rate of decay of vibrating response
A= 1> ; Amplitude of vibrating response
10+ R
o =10 ; Frequency of vibrating response

Figure 5-1 illustrates the simulated time history of deflection measured at several
distances from the load. Units have deliberately been omitted from all the figures in this

section to emphasize that these are simulated responses.
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The simulated response function was used while developing the logic required

for prediction of observation point deflections under a variety of loading conditions.
First, this function was used to compute deflection basins produced by falling weight
deflectometer (FWD) tests -- a case in which the load varies with time but not position
(i.e. the load is stationary) and the observation point is stationary. Next, the Green’s
function approach was applied to the case of a single moving load of constant amplitude
and velocity and passing by a stationary observation point. Finally, this approach was
extended to predict the shape of a deflection basin that could be measured by deflection

sensors moving with the load.

Deflection
0.2 . . .

0 0.5 1 1.5 2
Time

Figure 5-1. Simulated deflection response caused by a unit impulse load for several

distances from the impact site.

5.1.2 Case 1: Falling Weight Deflectometer

As described in Chapter 2, commonly only the peak deflections at each sensor are
recorded in a FWD test. Alternatively, the system could record the time history of
deflection at each sensor to capture the dynamic effects of the load.

Case 1 models a FWD test to determine the time history of deflection at several

sensors located at different distances from the load. Figure 5-2 shows the arbitrary shape
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of the load used in this process. The continuous actual loading curve was

approximated by a series of point loads, P, separated by an equal time step, Az. Each of
these point loads was assigned an impulse value, (i) =P (i) * At, that was multiplied by the
simulated deflection response for that distance. Figure 5-3 shows the response at R(10)
due to each impulse; the response due to the point load P(i) (from Figure 5-2) is
highlighted. To find the total response, the principle of superposition was used to
combine the deflections at each time step. The resulting total response at this sensor is

shown in Figure 5-4.

06 , , . 0.6 ,
P(i) P(i)
05 0.5
P(it+1) P(i+1)
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Figure 5-2. Simulated impact load function conversion to discrete point loads.

This process was repeated for each measurement distance. Figure 5-5a shows the
time history of deflection at several distances. Using the peak values from each of the
curves, the deflection basin measured by a typical FWD was created (Figure 5-5b) Note
that the peaks did not occur simultaneously, even though most current interpretation
techniques for FWD data assume that the maxima do occur simultaneously. The farther
the measurement point was from the loading point, the later the peak deflection occurred.
Figure 5-6 illustrates the manner in which the shape of the deflection basin changes with
time by plotting the basin measured at 6 discrete times after the impact occurs. In each
image, the thickest solid line represents the basing shape at the stated time value. The

progressively thinner dashed lines represent the basin shapes at previous time increments.
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Figure 5-3. Individual deflection responses due to individual impulse loads measured at
10 distance units from the impact site.
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Figure 5-5. a) Time history of deflection measured at several radial distances from the impact site. b)
Deflection basin constructed using peak deflections.

5.1.3 Case 2: Rolling [.oad Passing a Stationary Point

This case models a loaded wheel passing a stationary observation point. The
purpose of this case was to develop the logic for prediction of the time history of
deflection at the observation point due to the rolling load. Figure 5-7 illustrates the
manner in which the problem of a continuous, moving load was discretized as a series of
impulsive loads. Each point load, P, is separated in time by At, and in space by Ax. The
relationship between Ar and Ax is a function of the load velocity, V: Ax = VAt. For this
case, the load and velocity were assumed to remain constant throughout the period of
interest. Therefore, each impulse had equal magnitude, /=P*A¢, and was applied at equal
spacing, Ax.

The same procedure used in Case 1 to sum the individual responses applies to this
case. However, in contrast to Case 1, each time history of deflection produced by each
impulsive load has a different shape because it is applied at different distances from the
observation point. Figure 5-8 illustrates the individual responses due to each impulse for
two cases, one in which the wheel passed directly over the observation point (located at
x=0, y=0), and the other, in which the wheel traveled a parallel path offset by 30 units in

the y-direction (as in Figure 5-7). The time scale was adjusted so that at time = 0, the




58
wheel is at x=0, which is directly over, or closest to, the observation point. The

highlighted individual deflections are caused by the point load applied at x=0, when the
wheel is closest to the observation point. As described in Case 1, the resulting overall
time history of deflection for each case was computed using superposition, as shown in

Figure 5-9.

5.1.4 Case 3: Deflection “Snapshot”

Building upon the results of Case 2, this case considered the deflections at a
particular instant in time along a lihe parallel to the wheel path. Such deflections could
be measured by a series of observation points aligned along the wheel path, if the
deflections were all recorded simultaneously. In this sense, the deflections can be
thought of as describing a “snapshot” of the deflection basin produced by a moving load.
The same deflection basin would also be recorded by a string of observation points that
moved with the wheel; as such, this case is more applicable to rolling wheel
deflectometers than either of the preceding cases.

The snapshot deflection basin was developed through the following process.
First, a time history deflection response was created in the same manner used in Case 2.
Second, this time history was shifted in time by Az to represent the time history of
deflection that would be observed at (x+Ax, y). It should be noted that this is only valid
when the material properties at (x+Ax, y) are the same as at (x, y). In other words, an
observation point at (x+Ax, y) would experience the same time history of deflection as an
observation point at (x, y), except that the response would start Az later. Figure 5-10
illustrates this process for several observation points using the time history for y=30 from

Figure 5-9.
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Figure 5-7. Representation of a rolling wheel passing an observation point as a sequence
of impulse point loads.
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Figure 5-8. Individual impulse load deflection responses for case in which wheel passes (a) directly over

observation point (y=0), and (b) 30 distance units from observation point (y=30).
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Deflection

2 0 2 4
Time
Figure 5-9. Time history of deflection for rolling wheel passing directly over (y=0) and

30 units (y=30) from the observation point.
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Figure 5-10. “Snapshot” deflection basin conceptual development illustrating a constant time plane.

A “snapshot” can be created by choosing a constant time value and finding the
corresponding deflection at each position. In Figure 5-10, the dashed-line vertical plane

represents the constant time slice for which the snapshot was calculated. Figure 5-11
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shows the resulting snapshots for y=30 and y=0 when the response calculated in Case 2

(Figure 5-9) was shifted and cut as described above. At the instant these “snapshots”
were calculated, the wheel was directly over the x=0 position. Note that the peak
deflection occurred slightly behind the position of the wheel for both cases and that the
peak deflection for y=30 occurred farther behind the wheel than for the y=0 case.

Deflection
0.5 . . .
Direction of Wheel Travel
0 — [T
|
1 \\ """"" /
-1 F ~.\\\‘ l /' 1
1.5 [ ]
l /
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-2 b i / i
25 | ’ -
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¥
-3 . . , il .
-200 -150 -100 -50 0 50 100
X-position

Figure 5-11. “Snapshot” deflection basin observed when wheel is directly over x =0
position.

For this simplified case which has constant velocity and load, the shape of the
“snapshot” is the reverse image of the time history of deflection for a stationary
observation point, but with an important difference -- the scale on the x-axis measures
distance, not time. When loads and velocities are changing with time, this mirror image

effect will not occur because the position scale will not transform at a constant rate.

5.1.5 Case 4: “Snapshot” 3-Dimensional Deflection Basin

The “snapshot” deflection basin along a single line parallel to the wheel path was
developed in Case 3. Case 4 creates a three-dimensional deflection basin by extending
the calculations of Case 3 to several different parallel slices at different distances from the

wheel path. Plotting these snapshots together in three-dimensional space illustrates the
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shape of the basin that travels with the moving wheel load (Figure 5-12). At the instant

this basin was calculated, the load was located at x=0 and y=0.

5.1.6 Case 5: 3-D Basin for Two Parallel Rolling Wheels

This final case models two wheels traveling along parallel paths -- i.e. a loaded
axle. For this case, the principle of superposition was applied. Assuming the second
wheel applied the same load as the first, it would produce an identical deflection basin.
Therefore a copy of the single wheel basin can be shifted away from the x-axis by a
distance equal to the wheel spacing, and superimposed on the original basin. Summing

the two basins creates the two-wheel deflection basin illustrated in Figure 5-13.

Figure 5-12. Deflection basin observed when a single rolling wheel is directly over the
x=0, y=0 position.
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Figure 5-13. Deflection basin observed when the axle connecting two rolling
wheels is directly over the x=0 position.

5.2 Algorithm Modifications for Moving Deflection Sensors

The previous section described calculating the entire deflection basin produced by
a rolling wheel at every space increment along the direction of travel. However, rolling
weight deflectometers have three important differences from the idealized cases modeled
in Section 5.1.

First, rolling weight deflectometers (or any other pavement testing device) only
measure deflections at several discrete points. Therefore, only deflections at the
measurement sensors need to be calculated. This significantly reduces the required
computation time.

Second, Case 3 (Section 5.1.4) assumed that the deflection sensors were stationary

when the “snapshot” was measured. However, the deflection sensors on a rolling weight




65
deflectometer move with the load. This has important implications for determining the

applied loads that contribute to the deflection at the time of measurement.

Third, the previous section was based on the ideal assumption that the wheel
rolled at constant velocity and applied a constant load. In reality, rolling weight
deflectometers neither move at a constant velocity or apply a constant load. Therefore,
the model must base its calculations on the velocity and load recorded by the rolling
weight deflectometer over the testing time.

The following sections describe the algorithm developed to model a rolling

weight deflectometer. This algorithm was coded in the computer program BASIN.

5.2.1 BASIN Algorithm

A new computer program, called BASIN, was developed to compute the
deflections using the load and velocity of the rolling weight deflectometer. The flow
chart in Figure 5-14 illustrates the BASIN algorithm, which is further described below.
To simplify the explanation, only a single wheel load is considered, rather than a two-
wheeled axle.

First, data collected by the rolling weight deflectometer is loaded into the
program. This data consists of the velocity and load applied by the wheel, and the
deflection sensor measurements at each time increment. Also, the initial coordinates of
the wheel (X, y,) and the location of the deflection sensors relative to the wheel are
loaded into BASIN. Because BASIN is a forward model, not a backcalculation tool, the
deflection measurements are not used. However, when a backcalculation system is
completed, measured deflections could be loaded in the algorithm at this point.

Next, BASIN calculates the position of the wheel at each time increment. When
the wheel location is known at all times, calculation of the position of the deflection

sensors at all times by adding or subtracting the relative offset of the sensors from the

wheel location is straightforward.
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Figure 5-14. Flow chart of the algorithm coded in the computer
program BASIN.




67
For each deflection sensor, there are numerous load pulses that contribute to the

deflection measured at a given time. Each of these pulses is applied at a different
distance from the deflection sensor; therefore, BASIN next calculates all the radii for the
applied load pulses. Figure 5-8 illustrated this concept.

Next, the time history deflection response for each load pulse is computed by
BASIN. The response is generated using the Green’s functions described in Chapter 4.
The Green’s function uses the material properties of the layered system, which are
supplied from an input file, to calculate the deflection response.

After the deflection time history for each load pulse is known, the proper
contribution to the measured deflection must be selected. This is a key step that was not
necessary for the idealized cases modeled previously. In Section 5.1.3 (Case 2), the
entire time history of deflection due to each applied load (at each radius) was calculated.
Then all time histories were superimposed to create an overall time history of deflection
for a single observation point. However, because the time of deflection measurement is
known, only one deflection value from each time record is actually needed. Therefore,
BASIN selects the proper deflection contribution from each load pulse and combines all
contributions to calculate the total deflection.

Figure 5-15 and the following explanation help clarify this important concept.

When pulse P, occurs at time T, the wheel is at position (x, y,). The wheel
rolls forward until time 7', applying a new load pulse at each time step. At
time 77, the wheel is at location (x;y, y;9), and the deflection sensor is at

(xdef;y, ydefy). The radius between P, and the deflection sensor is:

o = \/(xdeflo - xo)2 + (ydeflo - yo)2

P, generates a response, Dy(r;,), that starts at time ¢, and lasts through time #,,,
where the ¢ time scale is relative only to each load pulse, and the T scale

represents absolute time. Only the deflection at time ¢, contributes to the
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total deflection measured by the deflection sensor. Similarly, P; creates a

response and contributes D, (7,,ty) at time T;,. Obviously, only pulses
occurring prior to the measurement time can influence the measured
deflection, so the last pulse that must be considered is Py. Therefore the total

deflection measured by the sensor at time 77, is:

DT(:Z;O)z Do(rw:tlo)"' D1(7'9’t9)+ Dz(rs,t8)+....+D8(r2,t2)+ D9(’"1:t1

X-Position

X-Position of wheel
when measurement is

recorded
|
P,
P,
At ;’
Py
% At .
Ax N/
At . Di(rs, 1)
\_/GP’ ? Dy(r10, ti0) v v g Time
1
: Dy(ry, 1)
1
1
T)o, time when measurement
is recorded
Deflection
v

Figure 5-15. Method for calculating deflections at sensor location Dy at time T,,. For simplification of the
illustration, haversine load pulses are represented by vertical arrows.
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After the last load pulse is considered, BASIN repeats the identical process for

the next deflection sensor. An entirely new set of radii and responses must be calculated
because each sensor location is different. When the total deflection for the final sensor
has been calculated, BASIN moves to the next set of measured deflections and calculates
the basin measured at the next time increment. For this thesis, the load, velocity, and
material properties were assumed to be constant throughout. Therefore, only one basin

was calculated because all others would be identical.

5.2.2 Avetime and Timeback

To limit the number of required computations, two questions must be answered
regarding the load pulses. First, how far apart (in time and space) should the load pulses
occur? Second, how far back (in time and space) should loads be considered to have an
influence on the measured deflection? Ideally loads would be placed infinitesimally
close and all previous loads would be considered. However, this is computationally
impractical. Two parameters were created to quantify these two issues: avetime and
timeback.

Avetime represents the time increment between each load pulse. For the idealized
cases analyzed in Section 5.1, point loads were assumed to be applied at every time (and
space) increment. When the transition to the real Green’s function solution was made,
haversine load pulses were applied such that they overlapped to produce a constant line
load. Section 4.2.4.4 first addressed this issue and showed that different combinations of
spacing and pulse amplitude could produce the same line load in time. The best spacing
between load pulses was only suitably determined through a parametric study. Section
7.2.5 describes the manner in which the predicted deflection basin changes as the spacing
is varied.

Timeback represents the period of time over which load pulses are considered to
influence the calculated deflections. This has a significant influence on the computation
time because the number of load pulses increase in direct proportion to timeback. By

examining time history deflections predicted by FWDDROP, it becomes clear that for an
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average load pulse duration of 30 msec, all responses are negligible after 200 msec.

Section 7.2.4 examines this parameter in greater detail to determine its influence on the

deflection basin shape.

5.2.3 Deflection Basin Assembly

When the deflection at each measurement location is known, the data can be
assembled and plotted to show the approximate shape of the deflection basin. Two- or
three-dimensional images can be created, depending on the location of the deflection
sensors. Figure 5-16 illustrates a longitudinal deflection basin computed by BASIN. The
data point markers show the location of the deflection sensors on a line directly under the
wheel path. Note that more sensors were located at points of high curvature to more
accurately define the basin.

Using the method described for the Case 4 idealized model (Section 5.1.5), three-

dimensional basins can be constructed using BASIN. Figure 5-17 illustrates such a basin.

Distance [m]

Deflection | ﬂm]

-360 L

=450

Figure 5-16. Longitudinal deflection basin with deflection sensors located at each data point marker.
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Figure 5-17. Single wheel deflection basin computed using BASIN.

5.2.4 3-D Basin for Two Parallel Rolling Wheels

The deflection basin created by two parallel rolling wheels, each with identical
load, can be constructed using superposition. As described in Case 5 (Section 5.1.6), a
two-wheel basin is created when a copy of the one-wheel basin is shifted in the transverse
direction by a distance equal to the wheel spacing, and then superimposed on the original

basin. Figure 5-18 illustrates the result of this process.




Figure 5-18. Double wheel deflection basin computed using BASIN.

5.4 BASIN Code Details

The idealized cases examined in Section 5.1 were programmed using MATLAB
because of the user-friendly syntax and enhanced graphics capabilities. However, when
the complex Green’s function was used, the program was converted to MS-FORTRAN.
The entire code is listed in Appendix A.
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Chapter 6
PAVEMENT DEFLECTION MODEL VERIFICATION

To test the accuracy of BASIN, the program was compared to other pavement
models. Data from dynamic moving wheel models was not available for comparison,
therefore BASIN was checked against static pavement deflection models. To make this
comparison, BASIN was modified to calculate the deflections that would be produced by
a FWD test. Using moduli that were backcalculated from static models, the deflections
from the new program, FWDDROP, were compared to deflections measured by FWD

tests.

6.1 FWDDROP Program

To create a program that would predict the pavement deflections produced by a
falling weight deflectometer, the BASIN program was modified to compute the time
history of deflection at a several fixed locations resulting from a transient load applied
over a known area at a known location. Several distinct, yet simple, changes were
required to accomplish the modification. These changes resulted in a new computer
program, FWDDROP. The steps required to develop FWDDROP are described in the
following paragraphs.

First, BASIN’s data input module was scaled down because the input data required
for an FWD model is less comprehensive than that required for the RWD model. For
FWDDROP, only the following items need to be known. (Units for the program can be
either metric or US, as long as they are consistent.)

Pavement system parameters - variables needed to define the geometry and
material properties of each layer of the pavement profile (thickness, shear wave
velocity, mass density, Poisson’s ratio, and damping ratio).

Load - the peak load applied by the FWD.

Load Duration - the period of time over which the impulse load is applied.
Load Area - the size of the FWD loading plate.

Sensor Locations - the locations of the FWD deflection sensors (geophones).
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Second, the BASIN modules that determine the location of the wheel and deflection

sensors were removed because the load plate and the sensors are stationary throughout the
test. Third, the program was changed so that only one load pulse is applied to the
pavement, rather than the multiple pulses used to model a moving load. This modification
required removal of the loop that calculated the response from each pulse. The coding in
BASIN that characterizes the load as a haversine was retained in FWDDROP; however,
any load shape (or an actual load time history) could be used in FWDDROP. Finally, the
output data module was modified to save the entire time history of deflection at each
sensor location.

With the modifications complete, FWDDROP was a fully functional dynamic
linear-elastic pavement deflection model. Figure 6-1 illustrates the deflection time
histories produced by FWDDROP and shows how a “static” deflection basin can be
produced by selecting the peak value from each deflection time history, then plotting

deflection as a function of distance from the center of the load plate.

Deflection [mils] ) Deflection [mils]

: 10 . :
0 0.05 Time [sec] 0 20 40 Distance [in]

Figure 6-1. Typical FWD deflection time histories and construction of “static” deflection basin.
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6.2 Comparison to SHRP Test Sections

Deflections calculated by FWDDROP were compared to deflections reported by
Meier (1995) for the two Strategic Highway Research Program (SHRP) pavement
sections illustrated in Figure 6-2. Meier used three static, layered elastic pavement
backcalculation programs to determine the moduli of the SHRP pavement layers, as listed
in Table 6-1. The first set of moduli was backcalculated using Meier’s artificial neural
network algorithm which he coded in an extremely fast basin-matching program. The
second set of moduli were determined using Modulus 4.0, SHRP’s database-searching,
basin-matching program (Rada, Richter, and Jordahl, 1994). The last set of moduli were
backcalculated by WESDEF, an iterative program that uses a layered elastic pavement
model that allows variable frictional properties on layer interfaces (Van Cauwelaert et al.,
1989). Considerable scatter (5%) exists in the AC layer moduli for both sections, even

though all analyses were performed with static load models.

SHRP Section A SHRP Section B

Asphalt Concrete 420in=0.107
Asphalt Concrete 4.95in=0.126 m sphatt-toner n: m

U hed G 1B 5.00 in=0.127
Crushed Limestone Base 13.4 in =0.340 nierushed Liravel Base n m

Sand Subgrade 0

Soil/Aggregate Subbase 12.0 in=0.305 m

Sand Subgrade 0

Figure 6-2. Pavement structures for SHRP test sections A and B (after Meier, 1995).

Because all the parameters of the pavement system and the loading time history
were not available, some values were estimated from the best available information.
Estimated values of mass density, Poisson’s ratio, and damping ratio for each layer of the

pavement system are listed in Table 6-2. Mass densities were based on suggested values
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reported by Yoder and Witczak (1975). Poisson’s ratios were taken as those assumed

by Meier (1995) for his backcalculations. The damping ratio was assumed to be 5% for
all materials. Sensitivity calculations showed that errors in the assumed density or

damping ratio had almost no effect on the calculated deflection basins.

Table 6-1. Moduli backcalculated from measured deflection basins
(Meier, 1995). [1 ksi = 6.895 MPa]

Backcalculated Moduli (ksi)
SHRP Pavement Neural Modulus
Section Layer Network 4.0 WESDEF
A Asphalt 1294 1250 1317
Base* 42 41 42
Subgrade 32 30 31
B Asphalt 855 921 918
Base 53 56 46
Subgrade 27 27 27

*Combination of crushed limestone base and soil/aggregate subbase

Table 6-2. Assumed layer properties for SHRP test sections.
[1 Ib/ft® = 16.018 kg/m’]

SHRP Pavement Density Poisson's | Damping
Section Layer [b/ft%] Ratio Ratio
A&B Asphalt 150.00 0.325 0.05
Base 130.00 0.35 0.05
Subgrade 120.00 0.35 0.05

The load pulse was modeled as a haversine with duration of 26.5 msec as suggested
by Meier (1995). Meier found that differences between the shape of an actual load pulse
and a haversine required that the peak of the haversine be increased by a factor of 1.09 to
achieve the same total impulse. Therefore, the peak of the haversine applied in

FWDDROP was 9% greater than the actual measured load.
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Deflection basins were calculated using each set of moduli for both pavement

sections, and the error between the measured and calculated deflections was determined.
Table 6-3 presents the results of the calculations. Figure 6-3 shows the measured
deflection basins and the basins predicted by FWDDROP using Meier’s neural network
backcalculated moduli. The agreement between the deflection basins is very good,
particularly when all of the assumptions that went into the dynamic model are considered.
It should be noted that the moduli used by FWDDROP were backcalculated using static

pavement deflection models, and the true dynamic modulus of each layer is unknown.

Table 6-3. Comparison of measured and calculated FWD deflections for SHRP test sections.
[l mil =25.4 pm]

Section Detlections [mils] at radius [in]
Load [lbs]| Layer Moduli 0 8 12 18 24 36 60
A Model Measured 9.47| 7.43| 6.31 49| 382 248| 1.24
10006 [Neural Network | Calculated 9.28| 7.47| 6.26] 4.78] 3.72] 247 1.48
error (%) -2.0 0.6 -0.8 2.4 2.7 -0.3 19.0
Modulus 4.0 Calculated 963l 7.76] 6.51 498| 3.89] 261 1.56
error (%) 1.6 4.4 3.1 1.7 1.9 5.1 26.0
WESDEF Calculated 9.31 7.52| 6.32| 4.85| 3.78 2.53 1.52
error (%) 1.7 1.2 0.1 1.1 0.9 2.1 22.2
B | ' “Messured | 12.21] 9.43] 7.65] 572] 4.32] 262] 1.36
9596 |Neural Network | Calculated | 12.46] 9.64| 7.89] 592 457 299 1.72
error (%) 2.0 2,2 3.2 3.4 5.7 13.9 26.7
Modulus 4.0 Calculated | 12.14| 947 7.80| 5.89] 4.56[ 299 1.72
error (%) -0.6 0.4 1.9 3.0 5.5 14.0 26.6
WESDEF Calculated | 12.56] 9.77| 7.99] 5.97| 4.59| 2.99 1.72
error (%) 29 3.6 45 4.4 6.2 13.9 26.8

6.3 Comparison to PACCAR Test Section

An additional pavement section was used to further evaluate the accuracy of
FWDDROP. A heavily instrumented asphalt concrete pavement section located at
PACCAR Inc.’s Technical Center in Mount Vernon, WA, was extensively tested and
analyzed by Winters (1993). Data collected from 130 FWD (WSDOT’s Dynatest 8000)

tests at 61 locations on a 12.2 m (40 ft) pavement section were analyzed using
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EVERCALC 3.3 (a static, layered elastic backcalculation program) to determine layer

moduli.

SHRP Section A

L
T 1

10 10 20 30 40 50 60

Measured
— —o- — Calculated

Deflection [mils]

Distaiice Tin]

SHRP Section B
0 : : } ; }
20 30

Measured

Deflection [mils]

— o —Calculated

Distance [in]

Figure 6-3. Measured and calculated deflection basins for SHRP sections A and B.
[1 mil =25.4 um]

Measured deflections from three FWD tests were compared with FWDDROP
calculations. All three tests were conducted at the site identified as Core 4, where layer
thicknesses had been determined from a drilled core, illustrated in Figure 6-4. Winters
backcalculated the moduli of the AC, base, and subgrade for each test, as shown in Table
6-4. One significant difference between the PACCAR profile and the SHRP sites is that

the material below the groundwater table was modeled as a stiff layer. Using
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EVERCALC, Winters determined that the modulus of the stiff layer was 40 ksi (275.8

MPa). Other researchers agree that a fully saturated soil layer should be modeled as a

stiff layer for backcalculation purposes (Newcomb et al., 1995).

PACCAR Core 4

Asphalt Concrete 547=0.137 m

Crushed Stone Base 13.07=0.33 m

Sandy Clay Subgrade 46.1”=1.171m
~Z

Saturated Stiff Layer ©

Figure 6-4. Pavement structures for
PACCAR test site Core 4.

Table 6-4. Moduli backcalculated from measured deflection basins.
[1 ksi= 6.895 MPa]

PACCAR FWD Backcalculated Moduli (ksi)
Core 4 Load (Ib) Asphalt Base Subgrade
1 14039 654.794 11.42 9.542
2 10631 678.106 11.634 10.14
3 5045 731.217 10.688 13.185

Winters reported the assumed Poisson’s ratios used for his backcalculations, but the
densities and damping ratios were not known. These values were again assumed as

described in Section 6.2, and are listed in Table 6-5.

The load pulse was modeled as a 30 msec haversine, which is consistent with the

duration reported by Chatti et al. (1995) for WSDOT’s Dynatest 8000. The reported load
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pulse for WSDOT’s FWD very closely resembled a haversine, therefore no

adjustments to match the total impulse were required.

Table 6-5. Assumed layer properties for PACCAR Core 4.
[1 Ib/ft = 16.018 kg/m’]

PACCAR | Pavement Density Poisson's | Damping
Core 4 Layer [b/3) Ratio Ratio
1,2,3 Asphalt 150.00 0.350 0.05

Base 130.00 0.40 0.05
Subgrade 110.00 0.45 0.05
Stiff 120.00 0.35 0.05

Table 6-6 lists the measured and predicted deflections and errors, and Figure 6-5
illustrates the deflection basins. The predicted deflections do not agree with the measured
deflections as closely as they did for the SHRP pavement sections; however, the shape of
the calculated basin is virtually parallel to that of the measured basin. It would appear
that the basins would match very closely if the peak load was reduced. However, Figure
6-6 illustrates that an 8% reduction in load changes the deflections differently at each
distance from the load; therefore, the calculated basin loses it’s parallel match to the
measured basin. The discrepancies between the basins can be possibly attributed to the
dynamic interaction of the stiff layer. As described in Chapter 3, stiff layers at shallow
depths can profoundly affect the measured deflections, which can result in significant

errors from backcalculation programs that use static loading models.

6.4 Modification of Deflection Time Histories

During analysis of the deflection time histories, a problem was encountered with the
deflections at the very beginning and end of the time record. Figure 6-7a indicates that
the initial pavement deflection is positive at the time of FWD impact. This implies that
the pavement has moved before loading has been applied. Also, the deflections at the
very end of the time record become positive, again implying that the pavement begins to

deflect again, long after the deflections due to the loading have ceased. Presumably,




these spurious deflections are due to a basic assumption in a Fourier transformation --
the motion transformed into the frequency domain is periodic (i.e., the motion begins
again immediately after the last point of the time record). It is also possible that the
spurious deflections may result in part from the Green’s function assumption that the

response varies linearly between the top and the bottom of each sublayer.

Table 6-6. Comparison of measured and calculated FWD deflections for PACCAR Core 4.
[1 mil =25.4 pm]

Deflections [mils] at radius [in]

Test Load [Ibs] 0 8 12 24 36 48
1 14039 Measured | 29.20| 24.06| 20.58| 11.66| 6.04| 3.17
Calculated | 31.18| 26.42| 22.97| 14.08) 8.37| 5.16

error (%)

6.8 9.8 11.6 20.8

Measured | 21.39| 17.57| 15.04] 8.52| 4.41| 233
Calculated | 22.64| 19.21| 16.67| 10.18( 6.03| 3.71

error (%) 5.9 9.4 10.9 19.5 36.8 59.4

3 5045 Measured 9.29] 7.62| 6.44| 3.56
Calculated 9.70| 8.15| 7.02] 4.14] 236] 143

error (%) 4.4 7.0 9.0 16.2 30.5 49.1

Input parameters were systematically varied to determine which affected this
problem. The thickness of the layers of the pavement system appeared to have the
greatest influence, but the spurious deflections could not be completely removed by

reducing the thickness of individual layers.
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Figure 6-5. Measured and calculated deflection basins for PACCAR Core 4
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Figure 6-6. Measured and calculated deflection basins for PACCAR Core 4
FWD tests when peak load is reduced by 8%. [1 mil =25.4 um]
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A correction procedure was developed to eliminate the computed spurious

deflections. A simple “tripwire” code loop was added to FWDDROP (and BASIN) to

process the calculated time history of deflection. From the beginning of the time record,

the deflection is set to 0.0 until the first negative deflection occurs. From that time until

the middle of the time record, the deflections are not modified. By the middle of the time

record, pavement deflections are negligible, so the deflections were set to 0.0 for the

remainder of the loading period. Figure 6-7b illustrates the modified time history of

deflection calculated for the same sensor used in Figure 6-7a. The peak deflections

calculated by FWDDROP remain absolutely unchanged by this modification. Also,

comparisons between deflection basins calculated by BASIN using the modified and

unmodified deflection records revealed only very minor differences.

Deflection [mils]

Deflection [mils]

2 : ; . ; 2 ; .
oy
o % O v
-2 -2
-4 —_— 4
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-10 . " . " -10 . . " . "
0 0.1 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
a) Time [sec] b) Time [sec]

Figure 6-7. a) Illustration of negative deflections at the beginning and end of the deflection time history
calculated by FWDDROP. b) Modified deflection time history.




Chapter 7
PARAMETRIC STUDY

The sensitivity of the calculated deflection basin to a variety of input parameters
was investigated by a detailed parametric study. The parametric study involved
systematic perturbation of each input variable and evaluation of the resulting changes in
calculated deflections. This chapter describes the plan, execution, and results of the

study.

7.1 Parametric Study Plan

A detailed, logical plan of action for the parametric study was prepared before
calculations began. First, a standard pavement section and standard loading were selected
for use throughout the study. Next, the BASIN inputs were grouped into three categories
of variables according to their role in the calculations: algorithm variables, pavement
system variables, and loading variables. Last, a method was developed for quantitatively
describing and comparing the calculated deflection basins. Each of these aspects of the

plan are described in the following sections.

7.1.1 Standard Pavement Section and Standard L.oading

A pavement section was selected to establish a standard deflection basin that would
serve as a common starting point for all sensitivity analyses. To keep the basin
consistent, a standard loading scheme was also designated.

A 12.2 m (40 ft) section of pavement at PACCAR Inc.’s Technical Center in Mt.
Vernon, WA, was selected as the standard pavement section for two primary reasons.
First, it is a very typical heavy-traffic flexible pavement structure -- the thickness and
properties of the asphalt, base, and subgrade layers are very typical of those commonly
used throughout Washington state. Second, the sections had been extensively analyzed
by Winters (1993); consequently, the layer thicknesses and moduli were well-established

from core samples and backcalculations of over one hundred FWD tests.
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Figure 7-1 illustrates the profile of the PACCAR test section. The pavement

structure consists of 137 mm (5.4 in) of asphalt on 330 mm (13.0 in) of crushed stone
base. The subgrade material is a medium stiff sandy clay. The groundwater table was
measured at the time of FWD testing and found at an average depth of 1.637 m (64.4 in)
below the pavement surface. The modulus of each layer was determined from the
average of 130 FWD analyses using EVERCALC 3.3. As described in Chapter 6,
Winters modeled the saturated soil below the ground water table as a stiff layer with a
modulus of 275.8 MPa (40 ksi). The density of each layer was assumed based on
suggesfed values, and the Poisson’s ratios were set equal to the values used by Winters
(1993) for backcalculation. A damping ratio of 5% was assigned to each layer.

In addition to the standard pavement section, a standard load was also selected. The
standard wheel load was set equal to the load applied by the left front wheel of a
Peterbuilt truck, model PB359. The standard tire pressure was selected at 90 psi, which
is a typical operating pressure for large trucks in the United States. This combination of
load and tire pressure results in a standard loaded radius of 0.112 m (4.4 in). As
explained in Chapter 4, the standard load pulse has a haversine shape with a duration of
30 msec. This duration corresponds to a standard travel speed of 50 km/hr = 13.89 m/sec
(31 mph).

7.1.2 Structure

The input variables of BASIN were grouped into three categories: algorithm
variables, pavement system variables, and loading variables.

Algorithm variables result from the concepts and mathematics used in BASIN.
They include the time increment, frequency interval, frequency range, layer
discretization, spacing between load pulses, and the number of pulses behind the wheel
that are considered in the deflection calculations. These parameters were evaluated first
because they influence the speed and accuracy of the deflection calculations. The
algorithm variables were adjusted to find values that produce high accuracy with minimal

computational effort.
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Figure 7-1. Standard Pavement Section.
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Pavement system variables describe the pavement structure that supports the

wheel load. They include the thickness, modulus, density, Poisson’s ratio, and damping
ratio of each layer. In typical static pavement analyses, all except the layer moduli are
assumed. However, because BASIN’s dynamic analysis may be more sensitive to the
other parameters, each of these variables were studied separately.

Loading variables characterize the magnitude and type of load applied to the
pavement. They include the magnitude, pulse duration, vehicle speed, and tire pressure.
These parameters are purely functions of the loading mechanism; however, it is important
to understand their effects on the basin shape because the sensitivity of the deflection
basin to the loading variables may help determine the optimum loading conditions and

the best locations for deflection sensors.

7.1.3 Data Presentation and Statistical Parameters

Because the sensitivity of deflection basins to parameter variations is not easily
described in qualitative terms, a quantitative approach was developed. For this purpose,
the shape of the deflection basin was described by a series of coefficients related to the
moments of the deflection basin. Description of distributed parameters by moments is
frequently used, most commonly in the area of statistics. If the deflection basin is
considered analogous to a probability density function, the mean, standard deviation,
coefficient of skewness, and coefficient of kurtosis can be calculated. These parameters

are most easily described and understood by referring to Figure 7-2.
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Figure 7-2. Example function, z(x), represented by N discrete points.
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The area under the function can be calculated using the following formula:
Area = i z,Ax,
i=1
Next, a function, f{x), analogous to the probability density function, can be calculated for

all x; to show the likelihood that a randomly sampled value of z will be at x.

3 z,Ax;

" Area

After f; is determined for all N terms, several statistical parameters can be calculated.

Mean, x : the mean, average, or expected value of the function is calculated as:

xX= ixiﬁ

i=1
Figure 7-3 shows how the mean for two identical functions can be different,

depending on the location of the distribution on the x axis.
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Figure 7-3. Two functions with identical shapes but
different mean values.

Standard Deviation, c: the standard deviation is a measure of the spread of the
function about the mean and is related to the variance, V, or second moment about
the mean, n,. The standard deviation is equal to the square root of the variance,

and is calculated in the following manner.
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N
Vb= 3 S -5)
i=1

o=V
Because the standard deviation has the same units as x, its actual value is only
meaningful when the units of x are known. Figure 7-4 illustrates two functions
centered about the same mean, but with different distributions -- one broad (large

0), one narrow (small o).

Small ©

|
|
|
|
|
|
|
|
pu -

X

Figure 7-4. Two functions with identical means but
different standard deviations.

Coefficient of Skewness, C5: The coefficient of skewness provides a quantitative
measure of the symmetry of the function about its mean value. The coefficient of
skewness is calculated from the third moment about the mean, ;. To render the
coefficient of skewness independent of scale, the third moment is divided by cube

of the standard deviation.
Y -\3
Hy = z fi(xf - )
i=1

Hj
C,=—
3 G 3
Skewness can be either positive, negative, or zero. If more than half of the
function is greater than the mean, the function is negatively skewed. If the

majority of the function is less than the mean, the function is positively skewed
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(Walker and Lev, 1969), as illustrated in Figure 7-5. A symmetric function has

zero skewness.

Figure 7-5. Two functions with opposite skewness, one
positive and the other negative.

Coefficient of Kurtosis, C4: Kurtosis is a measure of the peakedness of a function
calculated from the fourth moment about the mean, |, The dimensionless
coefficient of kurtosis is equal to the fourth moment divided by the fourth power

of the standard deviation.
ul RV
Ky = Z fi(xi - x)
i=1

Ky
C,=—
4= 4

Kurtosis describes the arch of the distribution, and is usually compared to a
normal distribution with a variance equal to the variance of the distribution of
interest. The coefficient of kurtosis of a normal distribution is always equal to 3.
Therefore, if the peak of the studied function is higher than the normal
distribution peak, C, is greater than 3. If the function is flatter on top and with a
lower peak than a normal distribution, C, is less than 3 (Sachs, 1982). Kurtosis is

illustrated in Figure 7-6.
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Figure 7-6. A normal distribution (C, = 3) and two functions with
greater and lesser kurtosis.

The results of each parameter study are illustrated with the sequence of figures
shown in Figure 7-7. Figure 7-7a shows the longitudinal deflection basin for each of the
parameters of interest. Longitudinal, rather than transverse, basins were computed
throughout this study because they were expected to reveal more information about
dynamic deflection behavior. In all deflection basin figures, the loaded wheel is located
at the zero position coordinate and moving from left to right. Figure 7-7b shows how the
peak deflection varies for each parameter value. Figure 7-7¢ illustrates the mean and
standard deviation of each deflection basin. The coefficient of skewness is plotted in
Figure 7-7d, and the coefficient of kurtosis is illustrated in Figure 7-7e. In Figure 7-7a,
the standard deflection basin is always printed using a bold line. In Figures 7-7b through

7-Te, the standard value is designated by a solid data point marker.

7.2 Algorithm Variables

The algorithm variables are the basic limits used when BASIN computes the
deflection basins. They can have a profound impact on the accuracy of the results and the
computation time required to achieve them. These parameters were investigated first to

find the values that maximized accuracy while minimizing computation time.
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Figure 7-7. Typical data presentation format.

7.2.1 Layer Discretization

The Green’s function calculation scheme developed by Kausel and applied in
PUNCH relies on the individual layers being sufficiently thin that a linear response
within a layer closely approximates the actual response. Thus, if layers are too thick, the
response may be in error.

To determine the best layering scheme for the standard pavement section, the
number of sublayers in each of the four layers was initially set to one. Then the number
of sublayers was systematically increased until there were a total of 40 sublayers in the
entire pavement system. A total of six layering schemes were tested.

As the number of sublayers was increased, the basin converged to a constant shape
(Figure 7-8a). The basin shape appeared to have converged when the sublayers totaled 14

sublayers (25c + 4pase + 4subgrade + 4stir); DO further change was visible as the number of
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sublayers exceeded the standard. The remainder of the analyses were performed with a

standard scheme consisting of 18 sublayers (2oc + 4pase + 4subgrade + Ssift)-

The peak deflections (Figure 7-8b) increased by 16% when the sublayers were
doubled from the initial setting, but only increased by 4% with further increases. The
mean (Figure 7-8c) remained nearly constant for all layering combinations. The standard
deviation decreased initially by 7%, but remained constant for combinations with more
than 14 layers. The coefficient of skewness (Figure 7-8d) also increased initially, but
then leveled out, indicating that the basin is slightly deeper behind the mean (relative to
the direction of travel). The coefficient of kurtosis (Figure 7-8¢) increased by 10% with
the first increase in layers, but then quickly became nearly constant when more than
about 10 layers were used. The coefficient of kurtosis indicates that the shape of the
deflection basin was more sharply peaked than the shape of a normal probability
distribution.

This analysis shows that the accuracy of the deflection basin is not improved by
increasing the number of layers above the standard scheme. Based on this observation
and the significant increase in computation time associated with more layers, the standard

layering scheme was deemed acceptable and used for the remainder of the analyses.

7.2.2 Cutoff Frequency
As described in Section 4.2.3, the loading function is represented by a bandwidth-

limited discrete Fourier series. Increasing the cutoff frequency used to characterize the
load improves the accuracy of the representation, but also increases the required
computation time.

To determine the best cutoff frequency for all other analyses, six specified cutoff
frequencies were examined, each with a frequency increment of 1.95 Hz. The smallest

cutoff frequency was 37.05 Hz and the largest was 154.05 Hz.
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Figure 7-9 illustrates the calculated basins for all cutoff frequencies. The lowest

cutoff frequency (37.05 Hz) resulted in a slightly deeper and wider basin than higher
cutoff frequencies. Virtually no change was recognizable when the cutoff frequency was
increased above 76.05 Hz.

The peak deflection decreased by 2% when the cutoff frequency was increased from
36 to 56 Hz, but remained constant thereafter. The mean was constant for all cutoff
frequencies. The standard deviation was essentially constant at 1.17 until the cutoff
frequency exceeded 76 Hz, and then jumped by 8% to 1.25 and remained constant
thereafter. The coefficient of skewness slowly decreased by 10% as the cutoff frequency
increased from 37 to 154 Hz. The coefficient of kurtosis also decreased by about 12%
overall, including an 8% drop when the cutoff frequency increased from 76.05 to 95.55
Hz.

This analysis showed that using all but the smallest cutoff frequency produces
approximately the same deflection basin. Although the coefficient of skewness and
kurtosis change slightly as the cutoff frequency was increased, unless they are used for
backcalculation purposes, a bandwidth of 56 or 76 Hz appears to be acceptable. For this
study, 76.05 Hz was selected as the standard cutoff frequency and used for the remainder

of the calculations.

7.2.3 Frequency Increment

The frequency increment, Af, used in a discrete Fourier transformation is
determined by the number of discrete points, NV, and the time increment, Az, between each
point in the loading function. These values are related in the following manner:

2n
Af =
4 N *At

Thus, the frequency increment can be increased by decreasing the time increment with

the total number of points held constant or by decreasing the total number of points with
the time increment held constant. Increasing the frequency increment decreases

computation time, but may increase error in the calculated deflection basins.
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To determine the best frequency increment, three combinations of Af'and At were

used, while NV was held constant at 1024.
At =0.00025 = Af =3.906
At =0.0005 = Af =195
Ar=0.001 = Af =0977

Figure 7-10 presents the results for each of these frequency increments. The only
visible difference occurred when the frequency increment was 3.906 Hz. For this case,
the basin was slightly shallower than the other basins at a distance 1 to 2 m behind the
wheel. Frequency increments of 1.95 and 0.977 Hz produced virtually identical basins.

The peak deflection for each frequency increment was identical. The mean
variation showed a slight, but consistent downward trend; the mean decreased by 8%
when the standard frequency increment doubled and increased by 8% when the increment
was halved. The standard deviation increased only slightly as the frequency increment
was increased. The coefficient of skewness was largest for the standard increment, and
reduced by about 30% for the other two increments. The coefficient of kurtosis was
lowest for the standard increment and increased by only 4% and 1% for the minimum and
maximum increments.

Even though the basins did not change visibly for these different frequency
increments, the statistical parameters show that small changes did occur. The minimum
frequency increment should produce the most accurate solution because the loading is
most accurately represented. However, the calculation time is inversely proportional to
the frequency increment, i.e. it doubles each time the frequency increment is halved.
Therefore, the middle increment (1.95 Hz) was selected as the standard because it

appeared to produce adequate accuracy in a reasonable computation time.
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7.2.4 Timeback

The variable timeback designates how far back in time (and space) the load pulses
are considered in deflection calculations. An appropriate value for timeback could be
selected by closely examining the deflection time histories for load pulses at various
distances and determining when the response has ceased. Alternately, the value of
timeback could be adjusted to determine the actual influence on rolling-wheel deflection
basins. Like the other parameters examined in this section, timeback has a strong
influence on the required computation time -- the number of load pulses for which a
response must be calculated is directly proportional to timeback.

Deflection basins using four different values of timeback were calculated, ranging
from 0.10 to 0.25 seconds. For the standard vehicle speed of 50 km/hr = 13.89 m/s (31
mph), these timeback values correspond to distances of 1.39 to 3.47 m (4.6 to 11.4 ft).

Figure 7-11 illustrates the calculated basins for all timeback values. The only
discernible change in the basins appeared at distances between 1 and 3 m (3.3 and 9.8 ft)
behind the wheel. The basin became very slightly deeper in this zone as timeback was
increased from 0.15 to 0.20 sec. No visible change was observed when timeback was
extended to 0.25 sec.

The peak deflection was constant for all values of timeback. The mean increased
very slightly as timeback was increased, and the standard deviation decreased by 3%
when timeback was doubled from 0.10 to 0.20. The coefficient of skewness was largest
when timeback was equal to 0.15, then dropped by 12% as timeback increased to 0.25.
The coefficient of kurtosis increased by only 1.5% when timeback was doubled from 0.1
to 0.2 sec.

This analysis shows that the deflection basin did not change visibly as timeback is
increased beyond 0.2 sec. The standard deviation and mean did change slightly as
timeback was increased. Additionally, the computation time increased by about 50%
when timeback was increased from 0.20 to 0.25 msec. Therefore, the standard value for

timeback was set at 0.20 seconds and used for the remainder of the analyses.
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7.2.5 Avetime

The parameter avetime represents the time step between each discrete load pulse.
Because the response to each pulse must be computed separately, the number of pulses,
N, considered within timeback has a significant influence on the required computation

time. Avetime and timeback are related in the following manner.

timeback
N=———
avetime

To determine the best time increment between load pulses, four different values of
avetime were analyzed, ranging from 0.5 to 4.0 msec. For the standard vehicle speed of
50 km/hr = 13.89 m/s (31 mph), these avetime values correspond to distances of 7 to 56
mm (0.3 to 2.2 in).

Figure 7-12 illustrates the calculated basins for all values of avetime. When avetime
was equal to 4 msec, the basin was shifted slightly forward of the other three basins,
however, the peak deflection was nearly identical to the others.

The peak deflection for the three smallest values of avetime was nearly identical,
and when avetime was increased from 1 to 4 msec, the peak decreased by only 0.7%. The
mean was constant for the two smallest values of avetime, but decreased by 8% as
avetime was increased to 2 and 4 msec. The coefficient of skewness showed a slightly
downward trend, decreasing a total of 20% from the minimum to maximum avetime. The
coefficient of kurtosis was nearly constant for all avetime.

In general, the basin shapes and the statistical parameters converged to constant
values as avetime was decreased. The computation time tripled when avetime was
changed from 1.0 to 0.5 msec, with no significant improvement in accuracy. Therefore,

the standard avetime value was set at 1 msec and used for the remainder of the analyses.
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7.3 Material Variables

The material variables describe the physical characteristics of the pavement
structure. They are the properties that pavement tests are designed to determine because
they can provide an indication of the strength and life expectancy of a pavement system.
Current backcalculation schemes can only determine one or two types of these variables,
so the others must be assumed or measured. Typically, the density, Poisson’s ratio, and
thickness of each layer are predetermined and the modulus is backcalculated. This

section describes the deflection basin sensitivity to each of these material variables.

7.3.1 Density

The density of each pavement layer is most strongly related to the type and
gradation of the material in each layer. AC layers have the highest densities because they
are primarily composed of crushed stone aggregate with the voids between aggregate
particles filled with asphalt cement. Subgrade layers generally have a lower density
because they are often composed of fine-grained soil with very little aggregate. The
gravel mixtures used in base course materials usually produce a density somewhere
between the AC and subgrade.

Three density schemes were selected for testing and applied to all material layers:
10% less than standard, standard, and 10% greater than standard. Material layer densities
can usually be estimated within a 10 or 20% error, so the limited range of densities was
reasonable.

Figure 7-13 illustrates the calculated basins for all density combinations. There was
no visible change in the deflection basins for either offset combination of densities.

The peak deflection for both offset density combinations was 0.4% less than that of
the standard densities. The mean and standard deviation were essentially constant for all
density combinations. The coefficient of skewness increased by 3% from the standard for
both of the other density combinations. The coefficient of kurtosis decreased by only

0.4% from the lowest to the highest density combination.
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This analysis shows that the deflection basin is extremely insensitive to the

density of the material layers. Therefore, even if the densities are slightly in error, the

predicted deflection basins will still be accurate.

7.3.2 Poisson’s Ratio

Poisson’s ratio relates the amount of lateral strain to the axial strain resulting from
loading in the axial direction. Poisson’s ratio, v, also relates Young’s modulus, E, to
shear modulus, G, in an isotropic linear elastic material in the following manner.

E
¢= 2(1+v)

Five combinations of Poisson’s ratio in the layers were tested, as listed below.

Layer 1 2 3 4 5

AC 0.325 0.35 0.35 0.35 0.35
Base 0.35 0.35 0.40 0.40 0.40
Subgrade  0.35 0.35 0.40 0.45 0.45
Stiff Layer  0.35 0.35 0.40 0.35 0.45

The Poisson’s ratio for each layer is usually estimated for backcalculation, but there is
considerable range in the values that are commonly used. The values listed above were
selected to represent typical values used for pavement deflection backcalculation.

Combination 4 was selected as the standard setting.

Figure 7-14 illustrates the calculated basins for all Poisson’s ratio combinations.
There was very little visible change in the basins; however, close examination reveals
that the first three combinations resulted in slightly deeper and wider deflection basins.

There was no visible difference between Combinations 4 and 5.
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The peak deflection for Combination 1 was 4% greater than that of the standard,
but all other combinations were within 2% of the standard. The mean was nearly
constant for all combinations and Combination 2 produced the largest difference in
standard deviation -- 6% greater than the standard. The coefficient of skewness was 12%
less than the standard for Combinations 1 and 2, but closer to standard for Combinations
3 and 5, at 7% less and 1% greater, respectively. The coefficient of kurtosis was more
than 12% less than standard for Combinations 1 and 2, and again, Combinations 3 and 5
were closer to standard.

This analysis shows that the deflection basin is fairly insensitive to the Poisson’s
ratio of the each layer. The tested range covered the extremes of assumed values, yet
none of the parameters was more than 14% different than the standard. This indicates
that Poisson’s ratios should be carefully estimated but large errors will not result if the

selected values are slightly in error.

7.3.3 Modulus

The modulus (or stiffness) of a material relates applied stress to resulting strain. In
pavement testing and analysis, the modulus of each layer strongly influences the
deflections produced by a wheel load. Large deflections result from large strains which
ultimately cause the pavement materials to weaken and deteriorate. This section

describes the deflection basin sensitivity to the modulus of each pavement layer.

7.3.3.1 AC Modulus

The modulus of the AC layer was 'a’ssigned eight values between 250 and 2500 ksi
(1724 and 17238 MPa), with the standard AC modulus set at 562.8 ksi (620.6 MPa). AC
moduli can exceed 1000 ksi (6895 MPa) at asphalt temperatures below 10° C (50° F). At
the other end of the scale, an AC modulus of 250 ksi can correspond to a distressed or a

very warm pavement (>27° C (80° F)).
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Figure 7-15 illustrates the deflection behavior calculated for each AC modulus.

The majority of the changes in the basin occurred within 0.8 m (2.6 ft) of the peak
deflection, and deflections farther from the peak changed very little over the entire range
of AC moduli. The basin became very pointed when the AC modulus was small, and
much more rounded when the AC was extremely large. Close observation of the area
about 1 m ahead and behind the peak showed that the deflections increased in this zone as
the AC stiffness increased, resulting in a wider deflection basin.

The peak deflection decreased by 20% when the modulus was doubled from the
initial value, and subsequent doublings resulted in 22% and 23% reductions from the
previous value. The mean was nearly constant over the entire range of moduli, while the
standard deviation steadily increased as the AC modulus increased, registering an 18%
increase from the smallest to largest values. The coefficient of skewness slowly
decreased by about 20% over the range of moduli, indicating that the deflection basin
became more symmetric with increasing AC modulus. The coefficient of kurtosis rapidly
decreased as the modulus increased, which should be expected from observing the

relative peakedness of the basins.

7.3.3.2 Base Modulus

The modulus of the base layer was varied between 5 and 50 ksi (35 and 345 MPa),
with the standard layer modulus set at 14.8 ksi (102 MPa). A base modulus of 5 ksi
corresponds to a relatively soft fine-grained soil and a modulus of 50 ksi may be achieved
with a well-graded, well-compacted crushed stone mixture. Most base course materials
have a modulus between 12 and 30 ksi (83 and 207 MPa).

Figure 7-16 illustrates the deflection behavior calculated for each base modulus
value. The base course modulus influenced deflections within about 1.2 m (3.9 ft) of the

peak deflection. Almost no change in the basins was visible outside this zone.
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The peak deflection increased by 20% when the base modulus was reduced from

the standard by 65%. The peak deflection decreased by 28% when the base modulus was
increased from the standard to the maximum. The mean value was essentially constant
for all base moduli, while the standard deviation increased by 20% from the minimum to
maximum modulus tested. The coefficient of skewness slowly decreased by 15% over
the range of moduli, indicating that the deflection basin becomes more symmetric as the
modulus increases. The coefficient of kurtosis increased by 18% from the standard to the

minimum, but only decreased by 19% from the standard to the maximum modulus.

7.3.3.3 Subgrade Modulus

The modulus of the subgrade layer was varied between 3 and 25 ksi (21 and 173
MPa), with the standard layer modulus set at 10.2 ksi (70.2 MPa). A subgrade modulus
of 3 ksi corresponds to a very soft clay or very loose sand, and a modulus of 25 ksi to a
very dense well-graded soil. The range of subgrade moduli typically encountered is
highly dependent on the local soil conditions. Desirable subgrades for highway
construction generally have moduli greater than about 12 ksi (83 MPa).

Figure 7-17 illustrates the deflection behavior calculated for each value of subgrade
modulus. The subgrade modulus influences deflections over a wide area of the
pavement, stretching nearly 2 m (6.6 ft) in either direction from the wheel. The general
shape of the basin stayed fairly consistent in the upper range of moduli. Heaving
(positive deflections) was predicted about 3 m (9.8 ft) behind the wheel for very weak
moduli of 3 ksi (21 MPa) or less.

The peak deflection rapidly decreased as the modulus increased from the minimum

to the standard. Above the standard, the peak deflections decreased nearly
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linearly, declining about 4 pm for every 1 ksi increase in modulus. The mean

increased slightly over the 3 to 10 ksi range, but then became constant as the modulus
increased. The standard deviation increased by 20 % when the modulus was doubled
from 5 to 10 ksi, but then increased less rapidly from the standard to the maximum
modulus. The coefficient of skewness sharply dropped by nearly 40% when the subgrade
modulus was increased from 3 to 5 ksi; thereafter, it decreased slowly over the middle
range of moduli. The coefficient of kurtosis posted a 15% gain when the modulus

increases from 3 to 5, but steadily decreased as the modulus rose to 25 ksi.

7.3.3.4 Stiff Layer Modulus

The modulus of the stiff layer was varied between 5 and 1000 ksi, with the standard
modulus set at 40 ksi. A modulus of 5 ksi corresponds to a soft clay or very loose sand
deposit -- not exactly a “stiff” layer, but thick deposits of these materials do exist.
Moduli approaching 1000 ksi may represent bedrock or a frozen groundwater layer.

Figure 7-18 illustrates the deflection behavior calculated for each stiff layer
modulus. The stiff layer modulus had a wider influence on the deflection basin than any
other layer modulus. Visible deflections extended beyond 5 meters from the wheel when
the modulus was equal to 5 and 10 ksi. As the stiff layer modulus was increased above
25 ksi, the basins began to converge to a consistent shape. Heave was predicted about
1.5m in front of the wheel and 2m behind the wheel when the modulus reached 1000 ksi.

The peak deflection initially decreased rapidly by 14% when the modulus was
doubled from 5 to 10 ksi; above 25 ksi, the decrease was nearly linear. The mean
noticeably increased as the modulus increased from 5 to 40 ksi, and then leveled out
thereafter. The standard deviation was very sensitive to the stiff layer modulus,
decreasing by 65% over the range from 5 to 75 ksi. The coefficient of skewness steadily
increased over the range of moduli examined. The coefficient of kurtosis rapidly
increased as the modulus increased, gaining 245% from the minimum to the maximum

modulus examined.
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7.3.3.5 Discussion

The deflection basin produced by a rolling wheel is very sensitive to the modulus of
each material Jayer. As expected, the modulus of the deeper material layers influenced a
wider zone of the deflection basin. Very soft subgrade and stiff layers produce such a
wide deflection basin that they may be very difficult to measure because the undeflected
reference measurement could easily be inside the deflection basin. Overall, the peak
deflection and the standard deviation are the most consistently sensitive statistical

parameters for each layer modulus.

7.3.4 Thickness

The thickness of each pavement layer is a key design decision when constructing
new pavements. For pavement testing and analysis, the thickness is an important input
for parameter backcalculation of layer moduli. Typically, the layer thickness is
determined from drilled cores, construction specifications, or occasionally field tests.
The sensitivity of the dynamic deflection basin to layer thickness may be such that the
layer thicknesses can be backcalculated with the layer moduli. This section investigates

the deflection basin sensitivity to the thickness of each layer.

7.3.4.1 AC Thickness

The thickness of the AC layer was varied between 50 and 600 mm (2 and 24 in),
with the standard layer thickness at 137 mm (5.4 in). AC layers as thin as 50 mm may be
used for a temporary road, and 600 mm of asphalt could be specified for a cargo aircraft
runway. Many highway AC layers are between 150 and 300 mm (5.9 and 11.8 in) thick.

Figure 7-19 illustrates the computed deflection behavior for each AC thickness.
The largest chénges in the basin occurred within 0.8 m (2.6 ft) of the peak deflection,
where the deflections decreased as the AC thickness increased. However, the deflections
outside this zone actually increased as the AC thickness increased. At large thicknesses,
the basin began to show a distinctive rounded peak within 0.2 m (0.7 ft) of the peak

deflection; beyond the wheel contact area, the basin became very broad.
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The peak deflection decreased rapidly as the thickness increased from 50 to 200

mm, but then decreased by 64% when the thickness was tripled from 200 to 600 mm.
The mean decreased slightly from the minimum to maximum thickness, while the
standard deviation increased nearly linearly with increasing AC thickness. The
coefficient of skewness decreased by about 0.06 for every 100 mm increase in thickness.
In a manner consistent with the shapes of the basins, the coefficient of kurtosis rapidly

decreased as the thickness increased.

7.3.4.2 Base Thickness

The thickness of the base layer was varied between 200 and 800 mm (8 and 31.5
in), with the standard layer thickness at 330 mm (13 in). A 200 mm thickness can be
used when the subgrade is fairly competent, while a thickness of 800 mm might be
required when the subgrade is weak or soft. Typical base thicknesses range from 150 to
600 mm (6 to 24 in).

Figure 7-20 illustrates the deflection behavior calculated for each base thickness.
The only visible changes in the deflection basins occurred in the zones 1 to 2 m (3.3 to
6.6 ft) ahead and behind the peak deflections. Very small changes were also observed at
the peak of the basin.

The peak deflection was nearly constant, only decreasing 3% over the entire range
of thicknesses studied. The mean was also neatly constant; the standard deviation was
constant for thicknesses between 200 and 600 mm, but then jumped by 9% when the
thickness was increased from 600 to 800 mm. The coefficient of skewness was nearly
constant, with a slight dip observed for the 400 mm thickness. The coefficient of kurtosis

decreased nearly linearly by 0.056 for every 100 mm increase in thickness.
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7.3.4.3 Subgrade Thickness

The thickness of the subgrade layer was varied between 0.5 and 2.0 m (20 and 79
in), with the standard layer thickness at 1.17 m (46 in). The subgrade thickness of an
actual pavement system depends on the local site conditions. The bottom of the subgrade
is defined by the top of the stiff layer; therefore, the thickness is entirely determined by
the depth to bedrock or the ground water table.

Figure 7-21 illustrates the deflection behavior calculated for each subgrade
thickness. As the subgrade thickness increased, the deflection basin became wider and
deeper, because the underlying stiff layer was deeper below the pavement surface.

The peak deflection decreased by 10% when the thickness was halved from 1.0 to
0.5 m, and increased by 10% when the thickness was doubled from 1.0 to 2.0 m. The
mean was also nearly constant over the range of thicknesses; the standard deviation
decreased by 10% when the thickness was halved from 1.0 to 0.5 m, but decreased by
only 7.5% when the thickness doubled from 1.0 to 2.0 m. The coefficient of skewness
was largest for the standard thickness, and decreased by 32% when the thickness was
increased to 2.0 m. The coefficient of kurtosis showed the same trend as the skewness,

with the standard thickness exhibiting the largest kurtosis.

7.3.4.4 Stiff Layer Thickness

The thickness of the stiff layer was varied between 5 and 40 m (16.4 and 131 ft),
with the standard layer thickness at 10 m (33 ft). Because the material below the stiff
layer is modeled as a halfspace with the same properties as the stiff layer, the thickness of
the subgrade only needs to be large enough to ensure an accurate solution.

Figure 7-22 illustrates the deflection behavior calculated for each stiff layer
thickness. Only the basin calculated for a stiff layer 5 m thick was visibly different than

the other basins.
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The peak deflection for the 5 m layer was 2.5% less than the deflection for the

standard (and all other) thickness. The mean was constant for all cases; the standard
deviation was 30% less than that of the standard when the stiff layer thickness was 5 m,
and only increased 3% above standard when the stiff layer thickness was increased to 40
m. The coefficient of skewness decreased by 13% when the thickness was increased
from 5 to 20 m, but was constant for thicker layers. The coefficient of kurtosis was
largest for the standard thickness, and decreased by 5% when the thickness was increased

to 40 m.

7.3.4.5 Discussion

The deflection basin produced by a rolling wheel is very sensitive to the thickness
of the AC layer, and somewhat sensitive to the thickness of the subgrade layer. However,
the base thickness had very little influence on the deflection basin. The standard
deviation and coefficient of kurtosis were very sensitive to the AC thickness, but not to
the thicknesses of the other layers. The standard stiff layer thickness of 10 m was shown
to be an acceptable choice because the basin shape did not visibly change as the thickness

was increased.

7.3.5 Combinations of Thickness and Modulus

Most pavement backcalculation programs cannot determine both the thickness and
modulus of each layer. Generally the thickness is measured or assumed, and the modulus
is backcalculated. This section examines the sensitivity of the deflection basin to both
modulus and thickness.

The static backcalculation program EVERCALC 4.0 was used to determine the
moduli of pavement layers for given input thicknesses. By specifying the same static
deflection basin while adjusting the thickness of only one layer, the modulus of all of the
layers was backcalculated. With this scheme, a stiff, thin layer and a soft, thick layer
would produce identical static deflection basins. In all cases, the stiff layer was held

constant at 1.64 m (64.4 in) below the pavement surface.
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7.3.5.1 AC Thickness/Modulus
Five combinations of AC thickness and modulus, listed in Table 7-1, were
examined. The modulus of the base and subgrade layers was adjusted for each case to

produce identical static deflection basins.

Table 7-1. AC Thickness/Modulus Combinations.

-50% -25% | Standard| 10% 20%
AC Thickness [mm] 69 103 137 171 206
AC Modulus [MPa] 15.1 4.7 22 1.3 0.9

Figure 7-23 illustrates the deflection behavior calculated for each AC
thickness/modulus combination. The only visible changes in the deflection basin were
observed within about 0.2 m (0.7 ft) of the peak deflection. In this zone, the peak
deflection increased with increasing AC thickness.

The peak deflection steadily increased as the AC thickness increased, gaining 17%
from the minimum to the maximum thickness. The mean and standard deviation did not
change appreciable over the range of thicknesses. The coefficient of skewness increased
slightly with AC thickness, gaining 6% from the minimum to maximum thickness. The
coefficient of kurtosis was nearly constant for all but the thinnest AC, which was 2.7%

less than the standard.

7.3.5.1 Base Thickness/Modulus
Five combinations of base thickness and modulus, listed in Table 7-2, were
examined. The modulus of the AC and subgrade layers was adjusted for each case so that

the static deflection basin remained constant.
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Table 7-2. Base Thickness/Modulus Combinations.

-50% -25% | Standard | 10% 20%
Base Thickness [mm]} 165 247 330 413 495

Base Modulus [MPa] | 0.343 0.162 0.106 0.101 0.092

Figure 7-24 illustrates the deflection behavior calculated for each base
thickness/modulus combination. In this case, the deflections only changed significantly
within 0.1 m (3.9 in) of the peak. As the base thickness increased, the peak deflection
decreased, most significantly when the base was 50% thinner than the standard.

The peak deflection was non-linearly related to the base thickness. The peak
deflection for the thinnest base was 7% greater than the standard, but the peak deflection
for the thickest base was only 2% less than the standard. The mean and standard
deviations were nearly constant for all thickness/modulus combinations. The coefficient
of skewness decreased slightly as the base thickness increased, declining only 5% overall.
The coefficient of kurtosis also decreased over the range of base thickness/modulus

combinations, declining only 4% overall.

7.3.5.2 Discussion

The changes in deflection basins for both analyses were surprisingly small,
considering the wide range of thicknesses used. The AC and base layer showed opposite
trends for the peak deflection, skewness, and kurtosis change with thickness. For the AC
layer, all three parameters increased as the AC thickness increased. For the base layer, all
three parameters decreased as the base thickness increased. However, the absolute
changes in basins were so small that it appears that backcalculating both the modulus and
thickness may be difficult. The results suggest that any attempt at simultaneous
backcalculation of modulus and layer thickness will require accurate definition of the

deepest part of the deflection basin.
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7.4 Loading Variables

The loading variables are a function of the vehicle speed, weight, and tire pressure.
The deflection basin sensitivity to these parameters may help determine the operating
conditions that would provide the most useful information about the pavement.
Additionally, the optimum location for deflection sensors might be determined from by

examining these parameters.

7.4.1 Wheel Load

The wheel load was varied between 3,000 and 11,000 Ib (13,344 and 48,928 N),
with the standard layer thickness at 5,540 Ib (24,642 N). The tire pressure was held
constant at 90.0 psi (620.6 kPa); therefore, the loaded area was adjusted so that constant
stress was applied for all loads. A 3,000 Ib load corresponds to a lightly loaded panel
truck, and an 11,000 Ib load represents an overloaded wheel (9,000 Ib is the limit in most
states).

Figure 7-25 illustrates the computed deflection behavior for each wheel load. As
the load increased, the basin became consistently deeper and wider.

The peak deflection linearly gained about 50 um with each 1,000 1b increase in
wheel load. The mean was constant for all loads, and the standard deviation was nearly
constant as well, gaining only 0.9% from the minimum to maximum load. The
coefficient of skewness was also nearly constant, and the coefficient of kurtosis showed a
slightly decreasing trend as the load increased.

The deflection basin behavior as the load increased was exactly as would be
expected for a linear-elastic analysis. When the load is doubled, the deflections at all

locations double. This is confirmed by consistency of all the statistical parameters.
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7.4.2 Tire Pressure

Four tire pressures were examined, ranging from 30 to 120 psi (207 to 827 kPa).
The standard value of 90.0 psi (620.6 kPa) is a typical pressure for heavy trucks. Lower
truck tire pressures are occasionally used when heavy loads are carried across weak
pavement structures, such as temporary gravel roads. Higher tire pressures are used
because they improve gas mileage at high speeds. In each case examined in this study, a
constant wheel load was applied and the load radius was adjusted accordingly.

Figure 7-26 illustrates the deflection behavior calculated for each tire pressure. As
the load increased, the basin became slightly deeper, but only the area within about 0.2 m
(7.9 in) of the peak deflection changed. This zone of change may reflect the size of the
load radius. The radius of the loaded area was 0.195 m (7.7 in) at 30 psi (207 kPa), but
reduced to 0.097 m (3.8 in) at 120 psi (827 kPa). These radii correspond to the areas of
the basins that actually change with the tire pressure.

The peak deflection decreased by 6% when the tire pressure was doubled from 30 to
60 psi, but only increased by 3% when the pressure was doubled again. The standard
deviation decreased slightly as the pressure increased, but the mean remained essentially
constant. The skewness also was constant for all the tire pressures. The coefficient of
kurtosis very slightly increased as the tire pressure was increased, reflecting the smaller
contact area at higher tire pressures.

The deflection basin was not very sensitive to tire pressure. However, this analysis
does show that higher pressures produce larger deflections directly under the loaded area,

supporting the use of low tire pressures on weak roads.

7.4.3 Vehicle Speed
The wheel speed was varied between 10 and 90 km/hr (6 and 56 mph). The speed

was adjusted by spacing the same load pulses further apart. In this manner, the same
loading was applied over time for all speeds, but the loading was significantly changed

oVver space.
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Figure 7-27 illustrates the computed deflection behavior for each wheel speed.

As the velocity increased, the peak deflection steadily reduced and the location of the
peak moved steadily farther behind the wheel. At the slowest speed, the basin was nearly
symmetrical underneath the wheel.

The peak deflection linearly decreased by 11 pum for each 10 km/hr increase in
speed. The mean was directly proportional to the speed, increasing (moving farther
behind the wheel) 100 mm for each 10 km/hr increase. The standard deviation increased
slightly with speed, showing a larger increase per interval at higher speeds. The
coefficient of skewness increased in a very non-linear fashion. Initially, the coefficient of
skewness was only 0.08, indicating the basin was nearly symmetric about the mean. As
the speed increased, the coefficient of skewness increased, but less with each increment,
eventually leveling off at about 0.35. The coefficient of kurtosis steadily decreased about
0.2 for each incremental increase in speed.

For this variable, the statistical parameters are very useful for identifying the
nuances of the deflection basin changes. The linear changes in mean and peak deflection
reflect the manner in which the vehicle velocity influences the load pulses over space
(described in Chapter 4). The coefficient of skewness shows that as the speed increases,
the basin becomes less symmetric. Notice that if the skewness curve were extended to
zero vehicle velocity, it would pass very nearly through zero, indicating the static basin is

perfectly symmetric.

7.4.4 Pulse Duration

As described in Chapter 4, the standard pulse duration of 30 msec was selected
because it has commonly been used by previous researchers, and because it closely
approximates the load duration for an FWD test. Chapter 4 also showed that a constant
line load could be applied using any duration pulse, as long as the amplitude of the pulse
was adjusted accordingly. This section examines how the load pulse selection can

influence the calculated deflections.
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Five different load pulses were examined, ranging between 10 and 50 msec. Based
on Barksdale’s (1971) analysis, a 10 msec pulse corresponds to a wheel velocity of over
75 km/hr (47 mph), and a wheel traveling at 5 km/hr (3 mph) would produce a 50 msec
pulse. However, the wheel velocity was held constant for these analyses -- only the pulse
duration was adjusted.

Figure 7-28 illustrates the computed deflection behavior for each pulse duration.
The basin became deeper and moved farther behind the wheel as the pulse duration
increased.

The peak deflection consistently decreased by 10 um for each incremental change
in pulse duration. The mean consistently increased (moved farther behind the wheel) as
the pulse duration was increased and the standard deviation increased the most at the
longest pulse durations. The coefficient of skewness increased almost linearly from 0.12
to 0.47 over the range of pulse durations. The coefficient of kurtosis was nearly constant
for the three shortest durations, and then reduced by 7.5% as the duration increased from
30 to 50 msec, reflecting the flatter peaks of the longer duration basins.

This analysis clearly shows that the deflection basin is sensitive to the pulse
duration. It seems that the appropriate duration should be selected as a function of the
vehicle speed. However, when this is done, the resulting deflections do not match the
trend illustrated in the previous examination of wheel speed. This phenomenon can be
attributed to the manner in which the dynamic response due to a load pulse is used in
BASIN. Shorter duration, larger amplitude pulses at the smallest radii have a greater
contribution to the total deflection than longer duration, smaller amplitude load pulses

applied at the same distances.
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7.5 Transverse Deflection Profile

All of the previous results were based on longitudinal deflection basins, which show
the pavement deflections along the direction of travel. However, the basin produced by a
moving wheel load is clearly three-dimensional. This section examines the deflections in
the transverse direction (perpendicular to the direction of travel) for one parameter, base
modulus. The deflection basin at a transverse plane intersecting the wheel path 0.2 m
(7.9 in) behind the wheel was calculated for each value of the base modulus. This plane
was selected to ensure the peak deflection for the entire basin was included.

The base moduli were varied over the same range used in the longitudinal analysis,
from 5 to 50 ksi (35 to 345 MPa). Figure 7-29 illustrates the differences in the
longitudinal and transverse deflection profiles.

The basins were perfectly symmetric about the peak deflection, as would be
expected for the transverse profile. The peak deflection and width of the basins appeared
to be nearly identical to the longitudinal profiles.

As illustrated in Figure 7-30, the peak deflection increased by 20% when the base
modulus was reduced from the standard to the minimum. As the base modulus increased
from the standard to the maximum, the peak deflection decreased almost linearly, of 2
pm for every 1 ksi increase in modulus. The mean was essentially zero for all base
moduli, and the standard deviation steadily increased as the base modulus increased. The
coefficient of skewness was nearly zero for all base moduli, confirming that the basins
were symmetrical about the mean. The coefficient of kurtosis decreased in a non-linear
manner. When the modulus was decreased from the standard to the minimum, the
kurtosis increased 20%, but when the modulus was increased from the standard by an

equal increment, the kurtosis decreased by only 11%.
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The transverse basins behave similarly to the longitudinal basins, except that the
skewness is removed. The peak deflections, standard deviations, and coefficient of
kurtosis are nearly identical for the transverse and longitudinal profiles -- the small

differences are likely caused by the skewness of the longitudinal basins.




Chapter 8
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary

This thesis presented the background, conceptual development, and implementation
of a mathematical model for predicting pavement deflections caused by a moving wheel
load. The development of this model was described in the preceding chapters.

Chapter 2 described a variety of existing nondestructive tests that are used for
pavement analysis. Static, dynamic, surface wave, and rolling wheel testing devices and
their historical applications were reviewed.

Chapter 3 presented several types of pavement deflection models. First, the
simplest models, static linear elastic, were described. Next, models that can characterize
the pavement system as composed of non-linear elastic or viscoelastic materials were
described. Finally, dynamic models used for predicting transient stationary and moving
load deflections were explained.

In Chapter 4, the Green’s function method of solution was applied to dynamic
layered elastic analysis. The Green’s functions used in this model computed the vertical
deflections at the surface of a pavement system resulting from a unit harmonic load
applied over a circular area. The calculated response was a function of the frequency,
layer material properties, and distance from the applied load. Fourier superposition
analysis in combination with the Green’s function solution was used to predict the
dynamic pavement deflection response. Details of the loading representation for a FWD
impulse and rolling wheel were described.

The conceptual development of the computer program BASIN was described in
Chapter 5. For convenience, a simulated deflection response function was initially used
while the bookkeeping methods were developed. This initial development described the
modeling of five increasingly complex load and observation scenarios. The last portion
of the chapter described the modifications required to insert the complex-valued Green’s

functions into the program BASIN.
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The results of the deflection model validation were presented in Chapter 6. The

rolling load model was modified to determine dynamic deflections caused by a falling
weight deflectometer so that predicted and measured deflections could be directly
compared.

The results of a detailed parametric study of BASIN were presented in Chapter 7.
Significant input variables were systematically adjusted to determine the sensitivity of the

deflection basin to each variable. Both layer material properties and loading parameters

were investigated.

8.2 Conclusions
A number of conclusions were developed from the results of the parametric study
using the new pavement deflection model, coded in the computer program BASIN. The

conclusions are organized according to their variable category.

Algorithm Considerations

Algorithm variables were examined to determine the values that produced the best

accuracy with the least computation time. Several significant results are listed below.

1. The thickness of the sublayers used to discretize the pavement must be
sufficiently thin to produce an accurate result. The parametric study showed
that the solution converges to a constant deflection basin shape, beyond which
thinner layers will not produce a more accurate result.

2. The deflection basin shape does not change appreciably when the cutoff
frequency used to characterize the load is larger than 95 Hz.

3. The spacing between individual load pulses must be less than or equal to 1
msec to guarantee an accurate solution.

Material Considerations
The material variables were studied to determine how their values changed the
basin shape. The sensitivity of the basin shape to each variable may provide clues about

which material parameters can be backcalculated.
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The shape of the predicted deflection basin was insensitive to material

density. None of the statistical parameters were changed by increasing or
decreasing the density from the standard case.

. The deflection basin shape was relatively insensitive to the Poisson’s ratio of

each layer. Of the statistical parameters, skewness and kurtosis were affected
most by the Poisson’s ratio, while the peak deflection and standard deviation
were virtually independent of the Poisson’s ratio.

The deflection basin shape was very sensitive to the AC modulus. As
expected, the peak deflection changed more dramatically than the other
indicators. Surprisingly, the coefficient of kurtosis was more sensitive to the
AC modulus than the standard deviation. As a result, there may be more
potential for correlating AC modulus to kurtosis than standard deviation. This
can be explained by the manner in which the basins changed -- almost all of
the change occurred very close to the peak deflection. Therefore, the spread
of the basin was not changed as much as its peak.

The deflection basin shape was very sensitive to the base modulus. Like the
AC modulus, the coefficient of kurtosis appeared to be more sensitive to the
base modulus than the standard deviation.

The deflection basin shape was extremely sensitive to the subgrade modulus.
Both the peak and the width of the basin changed significantly with the
subgrade modulus. In this case, the standard deviation was more sensitive to
the subgrade modulus than the other statistical parameters.

The deflection basin shape was extremely sensitive to the stiff layer modulus.
Unlike the other moduli tested, the standard deviation of the basin rapidly
decreased as the stiff layer modulus increased. The coefficients of skewness
and kurtosis were also very sensitive to the stiff layer modulus.

The deflection basin changed dramatically as the AC thickness changed. Peak
deflections increased rapidly as the AC became thinner. The standard
deviation decreased linearly as the AC thickness decreased. Very thick AC
layers (greater than 300 mm) resulted in very broad deflection basins with
small dips near the peak deflection.

The deflection basin shape was very insensitive to the thickness of the base
layer. Almost no changes in the statistical parameters or the general shape of
the basin were observed for different base layer thicknesses.

12. The deflection basin shape was somewhat sensitive to the subgrade thickness.

Unlike the behavior determined for the AC and base thickness, the peak
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deflection increased as the subgrade thickness increased. This behavior

can be explained by examining the stiffness of each layer. The subgrade is
softer than all the other layers. Therefore, it logically follows that a thicker
soft layer would result in larger deflections.

13. Only very small changes in the deflection basin result from combined
variations of the thickness and modulus of the AC or base layers. The
variations in moduli were backcalculated using static models, but
unexpectedly, the dynamic analysis used by BASIN did not compute
significantly different basins. These results suggest that attempts to
simultaneously backcalculate moduli and layer thickness will require very
accurate measurement of the deepest part of the deflection basin.

Loading Considerations

Loading variables were studied to determine their effects on the deflection basin
shape. The sensitivity of the deflection basin shape to each of these parameters may

provide clues about the optimum operating conditions for a rolling wheel deflectometer.

14. The deflection basin peak was linearly related to the applied wheel load. The
other statistical parameters were constant for all applied loads. This is a direct
result of the assumed linear-elastic stress-strain behavior of the pavement
materials.

. Only the deepest portion of the deflection basin was sensitive to the tire
pressure. Low tire pressures resulted in lower peak deflections, but outside
the tire contact zone, the basin was virtually identical to that produced by
higher pressure tires.

. The wheel speed has a significant effect on the deflection basin. Both the
peak deflection and the mean were directly proportional to the speed. In fact,
wheel speed was the only parameter that influenced the mean. The skewness
also was significantly affected by wheel speed. At creep speeds, the basin was
nearly symmetric; however, as the speed increased the skewness of the basin
became positive.

. The pulse duration selected for the analysis has a significant impact on the
shape and location of the deflection basin. Short pulses produced deeper,
more-symmetrical basins with mean values closer to the wheel. Long pulses
have the opposite effect. The method in which the relationship between load
pulses duration, load pulse spacing, and wheel speed should be applied in
BASIN is not yet clearly understood. Computations completed using load
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pulses corresponding to the wheel speed produced illogical, inconclusive

results.

The final analysis of the parametric study compared longitudinal to transverse

deflection profiles. These results may begin to show the advantages of one measurement

profile over the other.

18. Transverse deflection profiles can show similar trends to longitudinal profiles;

however, the skewness of the function is removed in the transverse profile --
i.e. the basin is perfectly symmetric. Transverse profiles may be better for
backcalculation because the absence of changes in skewness would help
clarify trends in the other statistical parameters. However, if transverse
profiles are measured, the distance between the transverse profile and the peak
longitudinal deflection must be accurately determined so that the relative
depth of deflection is understood. Also, parameters that produce changes in
skewness would not be backcalculated as accurately because the transverse
profiles cannot recognize these changes.

8.3 Recommendations for Further Study

The forward model for predicting pavement deflections caused by a moving wheel

load is just one component of a much larger problem. For the model to be of practical

value for backcalculating pavement properties, several areas require further study.

1.

The relationship between load pulse duration, vehicle speed, and load pulse
spacing should be further investigated. A clear understanding of these
parameters is required to implement the model properly.

Only a limited number of deflection sensors can be used to measure pavement
deflections. Therefore, it is important to maximize the information obtained
from each sensor. The optimum location of each sensor should be determined
based on the sensitivity of the deflection basin to expected material parameters
and the most probable operating speed and load. If possible, sensors should
be located to allow an accurate definition of the peak deflection zone, because
this area may be most sensitive to thickness and modulus.

. The statistical parameters used to characterize the deflection basins in the

parametric study may prove useful for very rapid direct correlations with layer
modulus and thickness. The application of these parameters to FWD
deflection basins may help develop new correlations for stationary tests too.
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4. The Green’s function solution developed by Kausel and Peek (1982) is

capable of calculating vertical or horizontal displacements within the
pavement structure. The program BASIN could be modified to calculate
deflections at critical locations in the pavement structure (i.e. horizontal
deflections at the bottom of the AC layer). From this information, dynamic
pavement damage models could be developed to predict the life expectancy of
a pavement structure.

5. The FORTRAN program BASIN required about 70 minutes to compute
deflections at 30 locations using a 486/66 MHz microcomputer with 8 Mb
RAM. This computation time is much too long for practical application of the
model. However, the modified program FWDDROP can calculate the time
history deflection for seven sensor locations in only 1.5 minutes. Therefore,
this model may have some current practical value for backcalculation. As
computer processing speeds increase, the required computation times will
undoubtedly decrease.

6. When deflection measurements from rolling weight deflectometers are
available, the accuracy of the model should be verified.




BIBLIOGRAPHY

Achenbach, J.D. and Sun, C. (1965). “Dynamic Response of Beam on Viscoelastic
Subgrade.” Journal of Engineering Mechanics, ASCE, Vol. 91, No. 5, pp. 61-76.

Arnberg, P.W., Holen, A., and Magnusson, G. (1991). “The High-Speed Road Deflection
Tester.” Presented at the Strategic Highway Research Program and Traffic Safety
on Two Continents, Gothenburg, Sweden, Sep 18-20, 1991, 13 pp.

ASTM D4694-87 (1995). “Standard Test Method for Deflections with a Falling-Weight-
Type Impulse Load Device,” 1995 Annual Book of ASTM Standards: Road and
Paving Materials; Paving Management Technologies, Section 4, Vol. 04.03,
American Society for Testing and Materials.

ASTM D4695-87 (1995). “Standard Guide for General Pavement Deflection
Measurements,” 1995 Annual Book of ASTM Standards: Road and Paving
Materials; Paving Management Technologies, Section 4, Vol. 04.03, American
Society for Testing and Materials.

Barksdale, R.D. (1971). “Compressive Stress Pulse Times in Flexible Pavements for Use
in Dynamic Testing,” In Highway Research Record 345, Highway Research
Board, Washington, D.C., pp. 32-44.

Bay, J.A., Stokoe, K.H. II, and Jackson, J.D., (1995). “Development and Preliminary
Investigation of Rolling Dynamic Deflectometer.” In Transportation Research
Record 1473, Transportation Research Board, National Research Council,
Washington, D.C., pp. 43-54.

Bentson, R.A., Nazarian, S., and Harrison, J.A. (1989). “Reliability Testing of Seven
Nondestructive pavement Testing Devices.” Nondestructive Testing of Pavements
and Backcalculation of Moduli, ASTM STP 1026, A.J. Bush III and G.Y. Baladi,
Eds., American Society for Testing and Materials, Philadelphia, pp. 41-58.

Burmister, D.M. (1943). “The theory of stresses and displacements in layered systems
and applications to the design of airport runways,” Proceedings of the 23rd
Annual Meeting of the Highway Research Board, Vol. 23, pp. 126-144.

Burmister, D.M. (1945a). “The general theory of stresses and displacements in layered
soil systems, 1, Journal of Applied Physics, Vol. 16, pp. 89-94.

Burmister, D.M. (1945b). “The general theory of stresses and displacements in layered
soil systems, I1,” Journal of Applied Physics, Vol. 16, pp. 126-127.




146
Burmister, D.M. (1945c). “The general theory of stresses and displacements in

layered soil systems, III,” Journal of Applied Physics, Vol. 16, pp. 296-302.

Chang, D., Roesset, J.M., and Stokoe, K.H. III (1992). “Nonlinear Effects in Falling
Weight Deflectometer Tests.” In Transportation Research Record 1355,
Transportation Research Board, National Research Council, Washington, D.C.,

pp- 1-7.

Chatti, K., Yun, K.K., Kim, H.B., and Utamsingh, R. (1995). “PACCAR Full-Scale
Pavement Tests.” Final Report to The University of California - Berkeley and
The California Department of Transportation, Michigan State University, East
Lansing, MI, 105 pp.

Crovetti, J.A., Shahin, M.Y. and Touma, B.E. (1989). “Comparison of Two Falling
Weight Deflectometer Devices, Dynatest 8000 and KUAB 2M-FWD.”
Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP
1026, A.J. Bush Il and G.Y. Baladi, Eds., American Society for Testing and
Materials, Philadelphia, pp. 59-69.

Davies, T.G. and Mamlouk, M.S. (1985). “Theoretical Response of Multilayer Pavement
Systems to Dynamic Nondestructive Testing.” In Transportation Research
Record 1022, Transportation Research Board, National Research Council,
Washington, D.C., pp. 1-7.

Graves, R.C. and Drnevich, V.P. (1993). “Calculating Pavement Deflections with
Velocity Transducers.” In Transportation Research Record 1293, Transportation
Research Board, National Research Council, Washington, D.C., pp. 12-23.

Haddad, Y.M. (1995). Viscoelasticity of Engineering Materials. Chapman and Hall,
London. 378 pp.

Hartzell, S.H. (1978). “Earthquake Aftershocks as Green’s Functions.” Geophysical
Research Letters, Vol. 5, No. 1, pp. 1-3.

Haskell, N.A. (1953). “The Dispersion of Surface Waves on Multilayered Media.”
Bulletin of the Seismological Society of America, Vol. 43, No. 1, pp. 17-34.

Hoffman, M.S. and Thomson, M.R. (1981). “Mechanistic Interpretation of
Nondestructive Pavement Testing Deflections.” Report for Project IHR-508,
[llinois Cooperative Highway and Transportation Research Program, University
of Illinois, Champaigne, IL. 249 pp.




147
Hoffman, M.S. and Thomson, M.R. (1982). “Comparative Study of Selected

Nondestructive Testing Devices.” In Transportation Research Record 852,

Transportation Research Board, National Research Council, Washington, D.C.,
pp. 32-41.

Holder, B.W. and Michalopoulos, C.D. (1977). “Response of a Beam on an Inertial
Foundation to a Traveling Load.” AIAA4 Journal, American Institute of
Aeronautics and Astronautics, Vol. 15, No. 8, pp. 1111-1115.

Huang, Y. H. (1993). Pavement Analysis and Design, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 805 pp.

Kausel, E. and Peek, R. (1982). “Dynamic Loads in the Interior of a Layered Stratum:
An Explicit Solution.” Bulletin of the Seismological Society of America, Vol. 72,
No. 5, pp. 1459-1481.

Kausel, E. and Roesset, JM. (1981). “Stiffness Matrices for Layered Soils.” Bulletin of
the Seismological Society of America, Vol. 71, No. 6, pp. 1743-1761.

Ketchum, Stephen A. (1993). “Dynamic Response Measurements and Identification
Analysis of a Pavement During Falling-Weight Deflectometer Experiments.” In
Transportation Research Record 1415, Transportation Research Board, National
Research Council, Washington, D.C., pp. 78-87.

Kramer, S.L. (1996). Geotechnical Earthquake Engineering, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 652 pp. In Press.

Meier, R.W. (1995). “Backcalculation of Flexible Pavement Moduli from Falling Weight
Deflectometer Data Using Artificial Neural Networks.” Ph.D. Thesis, Georgia
Institute of Technology, Atlanta, GA, 239 pp.

Moore, W.M., Hanson, D.I., and Hall, JW. (1978). “An Introduction to Nondestructive
Structural Evaluation of Pavements.” Transportation Research Circular 189,
Transportation Research Board, National Academy of Sciences, Washington,
D.C., January, 33 pp.

Nazarian, S. and Stokoe, K.H. II (1984). “Nondestructive Testing of Pavements Using
Surface Waves.” In Transportation Research Record 993, Transportation
Research Board, National Research Council, Washington, D.C., pp. 67-79.

Nazarian, S. and Stokoe, K.H. II (1989). “Nondestructive Evaluation of Pavements by
Surface Wave Methods.” Nondestructive Testing of Pavements and
Backcalculation of Moduli, ASTM STP 1026, A.J. Bush III and G.Y. Baladi, Eds.,
American Society for Testing and Materials, Philadelphia, pp. 119-137.



148

Newcomb, D.E., Van Ceusen, D.A., Jiang, Y., and Mahoney, J.P. (1995).
“Considerations of Saturated soil Conditions in Backcalculation of Pavement
Layer Moduli,” In Transportation Research Record 1473, Transportation
Research Board, National Research Council, Washington, D.C., pp. 63-71.

Ong, C.L., Newcomb, D.E., and Siddharthan, R. (1991). “Comparison of Dynamic and
Static Backcalculation Moduli fro Three-Layer Pavements.” In Transportation
Research Record 1293, Transportation Research Board, National Research
Council, Washington, D.C., pp. 86-92.

Prandi, E. (1967). “The LaCroix - L.C.P.C. Deflectograph.” Proceedings, International

Conference on Structural Design of Asphalt Pavements, University of Michigan,
Ann Arbor, MI, USA. pp. 1059-1068.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., (1992). Numerical
Recipes in FORTRAN, 2nd Ed., Cambridge University Press, Cambridge, pp. 490-
508.

Rada, G.R., Richter, C.A., and Jordahl, P. (1994). “SHRP’s Layer Moduli
Backcalculation Procedure,” Nondestructive Testing of Pavements and
Backcalculation of Moduli, Second Volume, ASTM STP 1198, H.L.. Von Quintas,
A.J. Bush IIT and G.Y. Baladi, Eds., American Society for Testing and Materials,
Philadelphia, pp. 38-52.

Roach, G.F. (1970). Green’s Functions: Introductory Theory with Applications. Van
Nostrand Reinhold Co., London, Great Britain, 279 pp.

Roesset, J.M. and Shao, K. (1985). “Dynamic Interpretation of Dynaflect and FWD
Tests.” In Transportation Research Record 1022, Transportation Research
Board, National Research Council, Washington, D.C., pp. 7-16.

Sachs, L. (1982). Applied Statistics: A Handbook of Techniques. Springer-Vertag, New
York, 706 pp.

Sanchez-Salinero, 1. (1987). “Analytical Investigation of Seismic Methods Used for

Engineering Applications.” Ph.D. Dissertation, The University of Texas, Austin,
TX, 400 pp.

Sivaneswaran, N., Kramer, S.L., and Mahoney, J.P. (1993). “Advanced Backcalculation
Using a Nonlinear Least Squares Optimization Technique.” In Transportation
Research Record 1293, Transportation Research Board, National Research
Council, Washington, D.C., pp. 93-102.




149
Thomson, W.T. (1950). “Transmission of Elastic Waves through a Stratified Solid

Medium.” Journal of Applied Physics, Vol. 21, No. 2, pp. 89-93.

Trim, D.W. (1990). Applied Partial Differential Equations. PWS-Kent Publishing Co.,
Boston, MA, 485 pp.

Trochanis, A.M., Chelliah, R., and Bielak, J. (1987). “Unified Approach for Beams on
Elastic Foundations under Moving Loads.” Journal of Geotechnical Engineering,
ASCE, Vol. 113, No. 8, pp. 879-895.

Van Cauwelaert, F.J., Alexander, D.R., White, T.D., and Barker, W.R. (1989).
“Multilayer Elastic Program for Backcalculating Layer Moduli in Pavement
Evaluation,” Nondestructive Testing of Pavements and Backcalculation of
Moduli, ASTM STP 1026, A.J. Bush Il and G.Y. Baladi, Eds., American Society
for Testing and Materials, Philadelphia, pp. 171-188.

Walker, H.M. and Lev, J. (1969). Elementary Statistical Methods, 3rd Ed. Holt,
Rinehart, and Winston, Inc., New York, 432 pp.

Winters, B.C. (1993). The PACCAR Pavement Test Section - Instrumentation and
Validation. M.S. Thesis, University of Washington, Seattle, WA. 223 pp.

Yoder, E.J., and Witczak, M.W. (1975). Principals of Pavement Design, 2nd Edition.
John Wiley & Sons, Inc., New York. 711 pp.

Zaghloul, S.M., White, T.D., Drnevich, V.P., and Coree, B. (1994). “Dynamic Analysis
of FWD Loading and Pavement Response Using a Three-Dimensional Finite
Element Program.” Nondestructive Testing of Pavements and Backcalculation of
Moduli, Second Volume, ASTM STP 1198, H.L.. Von Quintas, A.J. Bush III and

G.Y. Baladi, Eds., American Society for Testing and Materials, Philadelphia, pp.
125-138.




Appendix A
BASIN CODE

A.1 Primary BASIN Modules

BASIN is comprised of a primary module and three main subroutines. The
primary module controls the order of the program execution and performs basic
“bookkeeping” functions. The LOADDAT subroutine reads the loading and velocity
information recorded by the rolling weight deflectometer. Also, avetime, timeback, and
other parameters used to characterize individual load pulses are loaded into the program.
The subroutine GREEN was generously provided by Professor Roger Meier. This
subroutine calculates the Green’s function response for all frequencies within a specified
bandwidth. LOADTIME is called by GREEN after the response at each frequency is
known. Subroutine LOADTIME performs Fourier superposition analysis to create the
time history of deflection for each load pulse. Within LOADTIME, the subroutine FFT
is called to complete forward and inverse Fast Fourier Transforms. The subroutine FFT
was taken directly from Press et al. (1989). Finally, LOADTIME selects the proper
deflection from each time history and calculates the total deflection at each deflection

sensor location.

A.2 BASIN Input and Output
BASIN uses four input files.

pulse.dat This file contains the time increment, avetime, timeback,

pulse duration, total load amplitude, and wheel speed.

rwd.dat This file contains a simulated list of output data measured
by a rolling weight deflectometer. rwd.dat is created using

the program CRESDAT.
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input.dat This file is used by GREEN and contains the material

layer properties, loaded radius, and frequency information.

See the subroutine data in GREEN for formatting details.

sense.dat The initial location of the wheel and the locations of all

deflection sensors are listed in this file.

BASIN writes the output to one file -- output.out. The output file first lists the

basin number and the time and location of the wheel when the calculation was made.

Next, the coordinates for each deflection sensor and the deflection at that sensor is listed.

A.3 BASIN Code

program BASIN

O 00 000000000606

This program computes deflection resulting from a rolling wheel load.

BASIN uses Green's functions that determine the steady-state response

for a unit vibrating disk load. The green's functions are computed

in the subroutine GREEN, written by Roger Meier, with minor modifications
for this purpose.

NOTE: When compiling on MS FORTRAN Powerstation, two warnings will be
given that could not be removed. However, they do not prevent

program execution. They are both in line 1059 and read:

warning F4016: LOVE : formal argument E : type mismatch

warning F4016: LOVE : formal argument V : type mismatch

implicit real*8 (a-h,0-z)

parameter (iout=16,isense=25)

parameter (ntimemax=201,nmbkmax=201,nbasnmax=ntimemax-nmbkmax-+1,
1 nterms=1024,ndefmax=40)

parameter(itim==86)

integer*2 ihr,imin,isec,ihun

real*$ dt,time(ntimemax),velo(ntimemax),pleft(ntimemax),
1 pright(ntimemax)

real*8 defl(ntimemax),def2(ntimemax),def3(ntimemax)
real*8 xinit,yinit

real*8 xd(ndefmax),yd(ndefmax)

real*8 xwheel(ntimemax)

real*8 xobserv(nbasnmax,ndefmax)

real*8 yobserv(ndefmax)

real*8 radius(nmbkmax,ndefmax)
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real*8 findef(nbasnmax,ndefmax),calcdef(ndefmax)
real*§ avetime, pulseamp,totalamp

c-----Start timer
open (itim,file="timer.out',status=new")
call gettim(ihr,imin,isec,ihun)
write(itim,*) ihr,":',imin,"",isec

open (isense, file="sense.dat',status='old")
open (iout,file = 'output.out’, status = 'new"’)

c-----Load input data from RWD
call LOADAT (dt,ntime,avetime,timeback,numback,nbasin,
1 fwda,fwdb,totalamp,pulseamp,

2 time,velo,pleft,pright,
3 defl,def2,def3,
4 ntimemax)
c
c-----Read in basic location paramaters
¢  Xxinit = initial X position of wheel
¢ yinit = initial y position of wheel
¢ xd(i) = x position of deflection sensor i
¢ yd(i) =y position of deflection sensor i
c -------

read(isense,*) xinit,yinit,ndef
do i=1,ndef
read(isense,*) xd(i),yd(i) .
end do
close(isense)
c-----Calculate the position of the wheel at all times
¢ Assume the wheel moves in the +x direction

xwheel(1)=xinit
do i=2,ntime+1

xwheel(i)=xwheel(i-1) + velo(i-1)*avetime
end do

c-----Numback specifies how far backwards in time the program should look for
¢ calculating a response.
¢ Units for numback are in terms of the number of data points,

c-----By default, the first point at which we can calculate a basin is at
¢ xwheel(numback).

c-----Establish the observation point coordinates for all nbasins.
do jdef=1,ndef
yobserv(jdef)=yd(jdef)
end do
do i=1,nbasin
mtemp=numback + (i-1)
do jdef=1,ndef
xobserv(i,jdef)=xwheel(mtemp)+xd(jdef)
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end do
end do
write(*,*) 'Observation point coordinates established'

do jbasin=1,nbasin
C--mmmmmmn Calculate matrix containing all radii [numback x ndef]
do jdef=1,ndef
do iback=1,numback
radius(iback,jdef)=dsqrt((xwheel(iback-+jbasin-1)-
xobserv(jbasin,jdef))**2 +
2 yobserv(jdef)**2)
end do
end do
write(*,*) 'Radius matrix established'

—

Crmmmmmmmm Call GREEN to calculate the time history response
for each radii.

call GREEN(radius,calcdef,dt,
avetime,numback,ndef,
fwda,fwdb,pulseamp)

N —

write(*,*) "THRs complete’
Cm-mmmmeme Transfer the calcdef variable to a permanent findef variable
do jdef=1,ndef
findef(jbasin,jdef)=calcdef(jdef)
end do

Crmmmmmmmn Print the results in the output file

write(iout, *¥) 'Basin #',jbasin
write(iout,'(2e14.6)") time(jbasin-1+numback+1),

1 xwheel(jbasin-1+numback+1)
do jdef=1,ndef

write(iout,'(3e14.6)") xd(jdef),yd(jdef),findef(jbasin,jdef)

end do
write(iout,*) ' '
write(*,¥) 'Basin #',jbasin,’ complete'

end do

c-----Stop timer
call gettim(ihr,imin,isec,ihun)
write(itim,*) ihr,"’,imin,"",isec
close(itim)
close(iout)

stop
end

subroutine LOADAT (dt,ntime,avetime,timeback,numback,nbasin,
1 fwda,fwdb,totalamp,pulseamp,

O




2 time,velo,pleft,pright,

3 defl,def2,def3,

4 ntimemax)
Subroutine LOADAT

This routine first loads several basic parameters used throughout
the main program. These are in 2 input data files/

pulse.dat

dt = time increment

avetime = time spacing between load pulses

timeback = span of time used to determine the load pulses used
fwda = start of load pulse (should always be zero)

fwdb = end of load pulse

totalamp = total line load applied by the wheel

Next, This routine loads data from the RWD into the program.
For model development, this data wascreated by using the
program CRESDAT.

Data should be in seven columns of real numbers in the order:

rwd.dat
Time Velocity Left Wheel Right Wheel Deflect Deflect Deflect
Load Load 1 2 3

Total number of terms to be loaded is specified by ntime.

O 0 00 0000000006000 00000600060

implicit real*8 (a-h,0-z)
parameter(idat=14,loadinp=10)

real*8 dt,time(ntimemax),velo(ntimemax),pleft(ntimemax),
1 pright(ntimemax)

real*8 defl(ntimemax),def2(ntimemax),def3(ntimemax)
real*8 avetime,totalamp,pulseamp

real*8 dummy

open(loadinp,file="pulse.dat',status="old")

read(loadinp,*) dt,avetime,timeback

read(loadinp,*) fwda,fwdb,totalamp

ntime=timeback/avetime

numback = timeback/avetime
dummy=(fwdb-fwda)/2

pulseamp = totalamp/(dummy/avetime)
nbasin = ntime-numback-+1

c
open(idat,file="rwd.dat',status="old")
do i=1,ntime+1
read (idat,*) time(i),velo(i),pleft(i),pright(i),
1 def1(i), def2(i), def3(i)
end do
c
close(loadinp)
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O 0 0 00

close(idat)
return
end

subroutine LOADTIME(dt,uz,nfreq,calcdef,
1 avetime,numback,ndef,
2 fwda,fwdb,pulseamp)

O 000000

This routine creates an impulse load shape and converts it to
the frequency domain using an FFT. Next, it multiplies the
load times the green's function response for each frequency.
Finally, an inverse FFT of the result is used to produce a
time history response (thr).

parameter(nterms=1024,nterms2=2*nterms)

parameter(nmbkmax=201,ndefmax=40,maxfr=40)

parameter(pi=3.1415926535898)
parameter(ibug=86)

implicit real*8 (a-h,0-z)

real*8 fwda,fwdb,pulseamp

real*8 dt,fwdtime

real*8 avetime

real*8 pload(nterms),pdata(nterms2),data(nterms2)

real*8 fdata(nterms2),tdata(nterms2),rdata(nterms2)

real*8 thr(nterms)

real*8 tdef(ndefmax),deflec(nmbkmax),calcdef(ndefimax)

complex* 16 uz(maxfr,nmbkmax,ndefmax)

complex*16 fload(nterms),truncp(nterms),eye

complex*16 fresp(nterms),grnresp(nterms),static

eye=cdsqrt(-1)

----- Create loading shape in time domain based on input parameters

do i=1,nterms
fwdtime=(i-1)*dt
if(fwdtime.gt.fwda.and.fwdtime.lt.fwdb) then
pload(i)=0.5*pulseamp*cos((fwdtime-fwda)*2*pi/
1 (fwdb-fwda)+pi)+pulseamp*0.5
else
pload(i)=0.0
endif
end do

----- Stack the string of numbers into a single string of alternating

real and imaginary values
do i=1,nterms
pdata(1+(i-1)*2)=pload(i)
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pdata(2+(i-1)*2)=0.0
end do

c-----Convert to frequency domain using FFT function
isign=1
data=pdata
call FFT(data,nterms,isign)
fdata=data

¢/RGT Added to fix reversed sign of phase angle
do i=1,nterms
fdata(2-+(i-1)*2)=-fdata(2+(i-1)*2)
end do
¢/RGT
c-----Reassemble fload into complex number format
do i=1,nterms
fload(i)=fdata(1+(i-1)*2)+eye*fdata(2+(i-1)*2)
end do

c-----Truncate the frequencies to use fewer to define the load
write(*,*) 'nfreq=',nfreq
do i=1,nfreq
truncp(i)=fload(i)
end do
do i=nfreq+1,nterms-(nfreq-1)
truncp(i)=0
end do
do i=nterms,nterms-(nfreq-2),-1
truncp(i)=fload(i)
end do
write(*,*) 'Entering main LOADTIME loop'
c-----Convert uz into double-sided, green's function string

do jdef=1,ndef
tdef(jdef)=0.0d0
do iback=1,numback
static=uz(1,iback,jdef)
granresp(1)=dreal(static)
do i=2,nfreq
grnresp(i)=uz(i,iback,jdef)
end do
do i=nfreq+1,(nterms-(nfreq-1))
grnresp(i)=0.0d0
end do
ncount=2
do i=nterms,(nterms-(nfreq-2)),-1
ntemp=i-nterms+ncount
grmresp(i)=dreal(uz(ntemp,iback,jdef))-
1 eye*dimag(uz(ntemp,iback,jdef))
ncount=ncount+2
end do

c-----Multiply the green's function by the load in the frequency domain
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do i=1,nterms
fresp(i)=truncp(i)*grnresp(i)
end do

c-——-Restack the response data into proper format for inverse FFT evaluation
do i=1,nterms
rdata(1+(i-1)*2)=dreal(fresp(i))
rdata(2+(i-1)*2)=-dimag(fresp(i))
end do

c-----Convert back to the time domain using an inverse FFT
isign=-1
data=rdata
call FFT(data,nterms,isign)
tdata=data

c-----Unstack tdata into a string of real time values, thr,
¢ neglecting the imaginary part of the string.
do i=1,nterms
thr(i)=tdata(1+(i-1)*2)
end do
¢/RGT---If thr values at small and large times are less than zero, set to zero.
ntrip=0
do i=1,512
if(ntrip.eq.0) then
if(thr(i).1t.0.0) then
thr(i)=0.0d0
else
ntrip=1
end if
else
continue
end if
end do
do i=513,nterms
thr(i)=0.0d0
end do

c------ Select the proper deflections and sum them
ntemp=(numback-iback+1)*(avetime/dt)+1
deflec(iback)=thr(ntemp)
tdef(jdef)=tdef(jdef)+deflec(iback)

(VRE— close the numback loop
end do
calcdef(jdef)=tdef(jdef)

c-----close the ndef loop

end do

¢ close(ibug)
return




O 00000060

end

subroutine FFT(data,nterms,isign)

This function takes the FFT or IFFT of the string of complex
numbers, data, which contains nn complex terms. If isign = 1,
and FFT is performed, if isign = -1, an IFFT is performed.
Data must be packed such that data(1) is the real portion

of the first input term and data(2) is the imaginary portion.
Copied from "Numerical Recipes" by ???

2

integer*4 isign,nterms
real*8 data(nterms*2)
integer*4 i,istep,j,m,mmax,n
real*8 tempi,tempr
real*8 theta,wi,wpi,wpr,wr,wtemp
n=2*nterms
j=1
do i=1,n,2
if(j.gt.i)then
tempr=data(j)
tempi=data(j+1)
data(j)=data(i)
data(j+1)=data(i+1)
data(i)=tempr
data(i+1)=tempi
end if
m=n/2
if((m.ge.2).and.(j.gt.m)) then
j=-m
m=m/2
goto 1
end if
j+m
end do
mmax=2
if (n.gt.mmax) then
istep=2*mmax
theta=6.28318530717959d0/(isign*mmax)
wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do m=1,mmax,2
do i=m,n,istep
j=itmmax
tempr=sngl(wr)*data(j)-sngl(wi)*data(j+1)
tempi=sngl(wr)*data(j+1)+sngl(wi)*data(j)
data(j)=data(i)-tempr
data(j+1)=data(i+1)-tempi
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data(i)=data(i)+tempr
data(i+1)=data(i+1)+tempi
end do
witemp=wr
wr=wr*wpr-wi*wpitwr
wi=(wi*wpr)+(wtemp*wpi)+wi
end do
mmax=istep
goto 2
end if

¢/RGT Add normalizing term for inverse transform
if(isign.eq.-1) then
do i=1,nterms
data(1+(i-1)*2)=data(1+(i-1)*2)/nterms
end do
else
continue
end if
¢/RGT

return
end

subroutine GREEN(radius,calcdef,dt,

1 avetime,numback,ndef,
2 fwda,fwdb,pulseamp)
c
c
¢/RGT
¢ Obtained from Roger Meier
¢/RGT

this is a modified version of ignacio sanchez-salinaro's program
to find the green's function solutions to elastodynamic problems

c

c

c

¢ - the program and subroutine banners have been cleaned up

¢ - the file code it=17 has been moved to the parameter statement
¢ - the temporary files have been eliminated (they're never used)
¢ -the inputs for the load have been moved to subroutine data

¢ - the fixed file code it replaces the variable file code loadt

¢ - frequency has been added to the output to file code io

¢ - frequency has been removed from the output to file code it

¢ - all output moved from the subroutines into the main program
¢ - added close statements for all of the input/output file codes

¢ - subroutine hankel replaced with eduardo kausel's version

¢ - subroutine jbessel replaced with eduardo kausel's version

¢ - added code to automatically create the nodes w/in each layer
¢ - added array ns to specify the number of segments per layer

¢ -added an exhaustive input data definition section
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O 0000 000060060006 00

- collapsed the input read statements into implicit do-loops

- removed references to loading cases that are not supported

- added loads to the displacement calculations for line loads

- reformatted subroutine displac to enhance its readability

- moved all i/o from remaining subroutines to main program

- removed all debugging i/o that had been commented out

- added comment statements to subroutines data and echo

- removed subroutine line (which was never called anywhere)
- moved four and rr into subroutine boupra as parameters

- eliminated cs and cp arrays (never used except for halfspace)
- moved cs and cp calculations for halfspace into hspace

- moved call to subroutine boupra inside frequency do-loop

- eliminated temporary variables used inside frequency do-loop

see subroutine data for a description of the required input data

implicit real*8 (a-h,0-z)

parameter (nterms=1024,mlay=5,msub=40,statfr=0.01,

1 mdim=msub+1,mdim2=2*mdim,mdim3=3*mdim,

2 pi=3.1415926535898,pi2=6.2831853071796)
parameter(nmbkmax=201,ndefmax=40,maxfr=40)
parameter(in=12)

real*8 rock

integer*4 layer(mdim),jfreq

integer*4 iwk(mdim3)

real*8 h(mdim)

real*8 th(mlay),ns(mlay),vs(mlay),rro(mlay),anu(mlay),damp(miay)
real*8 mll(mdim),m12(mdim),mr1(mdim2),mr2(mdim?2)

real*8 load

real*8 dt,radius(nmbkmax,ndefmax)

real*8 avetime,fwda,fwdb,pulseamp

real*8 calcdef(ndefmax)

real*8 holdofr

complex*16 lame(mlay,3)

complex*16 all(mdim),al2(mdim),gl1(mdim),gl2(mdim)
complex*16 dl1(mdim),dr1(mdim),dr2(mdim),dr3(mdim)
complex*16 erl(mdim),er2(mdim),tr1 (mdim),tr2(mdim)
complex*16 gqrl(mdim),qr2(mdim),pr1(mdim),pr2(mdim)
complex*16 arl(mdim2),ar2(mdim2),br1{mdim2),br2(mdim?2)
complex*16 grl(mdim?2),gr2(mdim2)

complex*16 bl1(mdim),b12(100)

complex*16 wk1(mdim3),wk2(mdim2),wk3(mdim2),wk4(mdim?2)
complex*16 wk5(mdim?2),wk6(mdim2),wk7(mdim2),wk8(mdim?2)
complex*16 crl(mdim2),cr2(mdim2)

complex*16 er(mdim?2),vr(mdim2,mdim2),wk(mdim2,4)
complex*16 uzl,uz(maxfr,nmbkmax,ndefmax)

open(in,file="input.dat',status="old")

call data (th,ns,vs,rro,anu,damp,lame,
1 nfreq,oft,dfr,ifr,rock,
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2 r,load,loadt,il,id,

3 ndist,odist,ddist,idist,
4 nlay,

5 mlay,in)

¢/RGT-Statfr is the smallest frequency calculated -- used to approximate
¢ the solution for a static load.

holdofr=ofr

ofr=statfr
C¢/RGT---=mmmmmmee-

call sublay (layer,h,

1 th,ns,vs,

2 nfreq,ofr,dft,ifr,rock,

3 nlay,nsub,nodes,nodes2,

4 mlay,mdim)

fr = ofr
do jfreq = 1,nfreq
om = fr¥*pi2
oms = om*om
call boupra (all,al2,gll,gl2,mll,ml2,arl,ar2,brl,br2,

1 grl,gr2 mrl,mr2,di1,drl,dr2,dr3,erl er2,
2 trl,tr2,qrl,qr2,prl,pr2,

3 layer,h,

4 rro,lame,

5 nsub,

6 mlay,mdim,mdim?2)

call hspace (all,al2,gll,gl2,mI2,arl,ar2,br1,br2,
grl,gr2,mr2,dr2,dr3,er2,
tr2,qr2,pr2,
om,rock,
layer,
lame,vs,anu,damp,
nodes,nodes2,
mlay,mdim,mdim2)

call prelove (bl1,bl2,gl1,g12,mll,ml2,

1 oms,

2 nodes,

3 mdim)

call love (bll,bI2,all,al2,
el,vl,
wk1,wk2,wk3,wk4,wk3,
iwk,nodes,
mdim,mdim2,mdim3,99)

call prerayl (crl,cr2,grl,gr2,mrl,mr2,
oms,
nodes,
mdim?2)

call raylgh (arl,ar2,brl,br2,crl,cr2,
er,vr,
wk,wk1,wk2,wk3,wk4,wk5,wk6,wk7,wk8,
iwk,nodes2,
mdim2,mdim3,99)

do jdef=1,ndef

NN R WN

B W N =

W N -

W N =
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¢/RGT-----Start loop to calculate response for all radii at this frequency

do iback=1,numback

dist=radius(iback,jdef)
C/RGT-----=mmmeem

call displac (uzl,

1 €r,Vr,

2 r,load,loadt,il,id,

3 dist,

4 nodes2,

5 mdim2,pi)
uz(jfreq,iback,jdef)=uzl

end do
end do

write(*,*) 'frequency =',fr,'complete’
¢/RGT---Revert back to the original starting frequency when statfr
c is completed
if(jfreq.eq.1) ofr=holdofr

if (ifr.eq.0) then

fr = ofr + dfr*jfreq
else

fr = ofr + dfr*2**(jfreq-1)
end if

end do

c

¢/RGT-Subroutine to apply load shape and do FFT conversions
write(*,*) 'All frequencies complete. Entering Loadtime'
call LOADTIME(dt,uz,nfreq,calcdef,

1 avetime,numback,ndef,

2 fwda,fwdb,pulseamp)
C/RGT---mmmmmmmemmmmee

go to 100

99 write (*,*) 'problems with eigenvalues at fr ="fr

100 continue

close(in)
return
end

c

c

c

c

c
subroutine data (th,ns,vs,rro,anu,damp,lame,
1 nfreq,ofr,dft,ifr,rock,
2 r,load,loadt,il,id,
3 . ndist,odist,ddist,idist,
4 nlay,




O 0000 0000000000600 000006000600 060G 0606000606006 0

5 mlay,in)

input data

read (in,*) nlay,rock

nlay ....covenenenenn number of material layers
J(01¢) QO bottom boundary condition
'l' = half-space
'0' =rigid
read (in,*) (th(i),ns(i),vs(i),rro(i),anu(i),damp(i),i=1,nlay)
1111 ) IS total thickness of layer i
111 () number of segments in layer i
1) [ shear wave velocity in layer i
1y (o] ) IS mass density in layer i
anu(i) .....ccevenene poisson's ratio in layer i
damp(i) ....cccocrvnee. fraction of damping in layer i
read (in,*) r,load,loadt,il,id
) GBI radius of applied load
load ....cooevevenenenen magnitude of applied load

= force for point loads
= force per length for line loads
= force per area for area loads
loadt ........ccooueen.. type of applied load:
1 = point load vertical
3 = disk load vertical

11 RO node where load applied

id e node where displacements output
read (in,*) ndist,odist,ddist,idist

761 A number of output locations

odist ....oevrrenenee starting output location

ddist ....coevvenenee output location intervals

idist .oovrrererrrenenens type of progression

0 = arithmetic

1 = geometric
read (in,*) nfreq,oft,dft,ifr

nfreq .coceeerccencnnennn. number of frequencies
10§ RO starting frequency
dft i frequency interval
111 GEOUOUOROURIUURON type of progression

0 = arithmetic
1 = geometric

implicit real*8 (a-h,o0-z)

real*8 rock

real*8 th(mlay),ns(mlay),vs(mlay),rro(mlay),anu(mlay),damp(mlay)
real*8 load

complex*16 lame(mlay,3)

complex*16 gg.ee

read material layer data

read (in,*) nlay, rock
write (*,*) 'read nlay '
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do i=1,nlay

read (in,*) th(i),ns(i), vs(i),rro(i),anu(i),damp(i)

gg = rro(i)*vs(i)*vs(i)*demplx(1.0d0,2.0d0* damp(i))

ee = 2.0d0*gg*(1.0d0+anu(i))

lame(i,1) = ee

lame(i,2) = gg

lame(i,3) = 2.0d0*anu(i)*gg/(1.0d0-2.0d0*anu(i))
end do

read applied load data
read (in,*) r,load,loadt,il,id
read output location data

read (in, *) ndist,odist,ddist,idist
read frequency data

read (in,*) nfreq,ofr,dfr,ifr

return
end

subroutine sublay (layer,h,

1 th,ns,vs,

2 nfreq,ofr,dfr,ifr,rock,

3 nlay,nsub,nodes,nodes2,
4 mlay,mdim)

implicit real*8 (a-h,0-z)

real*8 rock

integer*4 layer(mdim)

real*8 h(mdim)

real*8 th(mlay),ns(mlay),vs(mlay)

compute minimum and maximum frequencies

frmin = ofr
if (ifr.eq.0) then

frmax = ofr + dfr*(nfreq-1)
else

frmax = oftr + dfr*2**(nfreq-2)
end if

print *,'minimum frequency specified =',frmin
print *,'maximum frequency specified = ',frmax

compute minimum and maximum wavelengths

wavmin = wavlen(th,vs,nlay,mlay,frmax)
wavmax = wavlen(th,vs,nlay,mlay,frmin)

print *,'minimum Rayleigh wavelength =',wavmin
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print *,'maximum Rayleigh wavelength =',wavmax
generate sublayers within each material layer

nsub =0
do lay = 1,nlay
dz = th(lay)/ns(lay)
do j = 1,ns(lay)
nsub =nsub + 1
h(nsub) = dz
layer(nsub) = lay
end do
end do

add another sublayer for the transmitting boundary

nodes = nsub

if(rock.eq.1) then
nodes = nodes + 1
layer(nodes) = nlay

endif

nodes2 = nodes*2

return
end

function wavlen (th,vs,nlay,mlay,fr)

computes approximate wavelength of dispersed Rayleigh wave

implicit real*8 (a-h,0-z)
real*8 th(mlay),vs(mlay)

w(z) = 1.0 - 1.36765*exp(-2.2281*z) + 0.36765*exp(-5.6137*z)

guess = vs(nlay)/fr

1 above = 0.0
depth = 0.0
speed = 0.0
do i = 1,nlay

depth = depth + th(i)
below = w(depth/guess)
speed = speed + vs(i)*(below-above)
above = below
end do
if (above.lt.1.0) speed = speed + vs(nlay)*(1.0-above)
wavlen = speed/fr
if (abs(wavlen-guess).1t.0.15) return
guess = wavlen
gotol
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C

end

subroutine displac (uzl,

1 er,Vr,

2 r,load,loadt,il,id,
3 dist,

4 nodes2,

5 mdim2,pi)

computes displacements using Green's function

implicit real*8 (a-h,0-z)

real*8 load

complex*16 er(mdim?2),vr(mdim2,mdim?2)
complex*16 uzl

complex*16 ev,zr,zd

complex*16 h0d,h1d,h0r,h1r,jod,j1d,jOr,j1r,ilr
complex*16 vzd,vzl

complex*16 pihi

vertical point load

if(loadt.eq.1) then
uz1=(0.0d0,0.0d0)
do I=1,nodes2
ev=er(l)
zd=ev*dist
call hankel (zd,h0d,h1d,2)
vzd=vr(2*id,l)
vzl=vr(2*il,1)
uzl =uzl + vzd*vzl*h0d
end do
uzl = uzl*load/(0.0d0,4.0d0)
endif

vertical disk load

if(loadt.eq.3) then
uz1=(0.0d0,0.0d0)
pihi=pi/(0.0d0,2.0d0)
do I=1,nodes2
ev=er(l)
zr=ev*r
zd=ev*dist
if(dist.It.r) then
call hankel (zr,hOr,h1r,2)
call bessel (zd,j0d,j1d)
ilr=pihi*j0d*h1r/ev - 1.0d0/r/ev/ev
else
call hankel (zd,h0d,h1d,2)
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call bessel (zr,jOr,j1r)
ilr=pihi*j1r*h0d/ev
endif
vzd=vr(2*id,l)
vzl=vr(2*il,])
uzl =uzl + vzd*vzl*ilr

end do

uzl = uzl*load*r

endif

return
end

subroutine boupra (all,al2,gl1,g12 ml1,ml2,arl,ar2,brl,br2,

1 grl,gr2 mrl,mr2,dl1,drl,dr2,dr3,erl,er2,
2 trl,tr2,qrl,qr2,prl,pr2,

3 layer,

4 h,rro,lame,

5 nsub,

6

mlay,mdim,mdim?2)

generates boundary layer matrices (a,b,g,m,e,d,n,l,q)

implicit real*8 (a-h,0-z)

parameter (four=1.0d0,rr=1.0d0)

integer*4 layer(mdim)

real*8 h(mmdim)

real*8 rro(mlay)

real*8 mll(mdim),m12(mdim),mr1(mdim2),mr2(mdim?2)
complex*16 lame(mlay,3)

complex*16 all(mdim),al2(mdim),gl1(mdim),gl2(mdim)
complex*16 arl(mdim2),ar2(mdim2),br1(mdim2),br2(mdim?2)
complex*16 grl(mdim?2),gr2(mdim2),d11(mdim),dr1(mdim)
complex*16 dr2(mdim),dr3(mdim),er1(mdim2),er2(mdim2)
complex*16 tr1(mdim),tr2(mdim),qr1(mdim),qr2(mdim)
complex*16 prl(mdim),pr2(mdim)

complex*16 con,conl

al1(1)=0.0d0
gl1(1)=0.0d0
ml1(1)=0.0d0
ar1(1)=0.0d0
ar1(2)=0.0d0
br1(1)=0.0d0
br1(2)=0.0d0
gri(1)=0.0d0
gr1(2)=0.0d0
mr1(1)=0.0d0
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mr1(2)=0.0d0
er1(1)=0.0d0
dr1(1)=0.0d0
d11(1)=0.0d0
tr1(1)=0.0d0
qr1(1)=0.0d0
pr1(1)=0.0d0

do i=1,nsub
k=2*i
j=layer(i)
con=h(i)*lame(j,2)/3.

conl=h(i)*(2.*lame(j,2)+lame(j,3))/3.

all(i)=all(i)+con
all(i+1)=con
al2(i)=0.5*con
arl(k-1)=arl(k-1)+conl
arl(k)=arl(k)+con
arl(k+1)=conl
arl(k+2)=con
ar2(k-1)=0.5*conl
ar2(k)=0.5*con
conl=lame(j,2)*h(i)/(3.*1r)
con=2.*conl
erl(i)=erl(i)+con
erl(i+1)=con
er2(i)=conl
con=conl1*four
conl=0.5*con
tr1(i)=tr1(i)+con
tr1(i+1)=con
tr2(i)=conl
conl=2.*con/rr
con=2.*conl
qrl(i)=qrl(i)+con
grl(i+1)=con
qr2(i)=conl
con=lame(j,3)*0.5
conl=lame(j,2)*0.5
dr1(i)=dr1(i)+con
drl(i+1)=-con
dr2(i)=conl

dr3(i)=con
dl1(i)=dl1(i)-conl
dl1(i+1)=conl
con=four*lame(j,2)*0.5/rr
prl()=prl(i)tcon
prl(i+1)=-con
pr2(i)=con
con=lame(j,2)/h(i)
conl=(2.*lame(j,2)+lame(j,3))/h(i)
gli(i)=gll1(i)+con
gll(i+1)=con
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gl2(i)=-con
grl(k-1)=grl(k-1)+con
grl(k)=grl(k)+conl
grl(k+1)=con
gri(k+2)=conl
gr2(k-1)=-con
gr2(k)y=-conl
cons=rro(j)*h(i)/3.
mli(i)=mll(i)+cons
mll(i+1)=cons
ml2(i)=0.5*cons
mrl(k-1)=mr1(k-1)+cons
mrl(k)=mrl(k)+cons
mrl(k+1)=cons
mrl(k-+2)=cons
mr2(k-1)=0.5*cons
mr2(k)=0.5*cons
con=0.5*(lame(j,2)-lame(j,3))
con1=0.5*(lame(j,2)+lame(j,3))
brl(k-1)=brl(k-1)+con
brl(k)=-conl
brl(k+1)=-con
br2(k-1)=conl
br2(k)=0.

end do

return

end

subroutine hspace (all,al2,gl1,gl2,ml2,arl,ar2,brl,br2,
grl,gr2, mr2,dr2 dr3,er2,

tr2,qr2,pr2,

om,rock,

layer,

lame,vs,anu,damp,

nodes,nodes2,

mlay,mdim,mdim2)

implicit real*8 (a-h,0-z)

real*8 rock

integer*4 layer(mdim)

real*8 vs(mlay),anu(mlay),damp(mlay)

real*8 mI2(mdim),mr2(mdim2)

complex*16 lame(mlay,3)

complex*16 all(mdim),al2(mdim),gl1(mdim),gl2(mdim)
complex*16 dr2(mdim),dr3(mdim)

complex*16 er2(mdim),tr2(mdim)

complex*16 qr2(mdim),pr2(mdim)

complex*16 arl(mdim2),ar2(mdim2),br1(mdim?2),br2(mdim2)
complex*16 grl(mdim?2),gr2(mdim2)

complex*16 cp,cs,cpcs,coef

NV AW -

calculates half-space contribution (tranmitting boundary)
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if(rock.eq.1) then
j = layer(nodes)
cs = vs(j)*cdsqrt(demplx(1.0d0,2.0d0*damp(j)))
cp = cs*dsqrt((2.0d0-2.0d0*anu(j))/(1.0d0-2.0d0* anu(j)))
cpes = cp/cs
coef = (0.0d0,1.0d0)*lame(j,2)*cs/2.0d0/om
all(nodes) = all(nodes) - coef
arl(nodes2-1) = arl(nodes2-1) + coef*(1.0d0-2.0d0*cpcs)
arl(nodes2) = arl(nodes2) + coef*cpcs*cpes*(cpes-2.0d0)
coef = (0.0d0,1.0d0)*lame(j,2)*om/cs
gll(nodes) = gil(nodes) + coef
grl(nodes2-1) = gri(nodes2-1) + coef
grl(nodes2) = grl(nodes2) + coef*cpcs
coef = lame(j,2)*(cpcs-2.0d0)
brl(nodes2-1) = brl(nodes2-1) - coef
endif

al2(nodes)=0.
gl2(nodes)=0.
mi2(nodes)=0.
ar2(nodes2-1)=0.
ar2(nodes2)=0.
bril(nodes2)=0.
br2(nodes2-2)=0.
br2(nodes2-1)=0.
br2(nodes2)=0.
gr2(nodes2-1)=0.
gr2(nodes2)=0.
mr2(nodes2-1)=0.
mr2(nodes2)=0.
er2(nodes)=0.
dr2(nodes)=0.
dr3(nodes)=0.
tr2(nodes)=0.
qr2(nodes)=0.
pr2(nodes)=0.

return
end

subroutine prelove (bl1,b12,g11,g12,ml1,mi2,

1 oms,
2 nodes,
3 mdim)

implicit real*8 (a-h,0-z)
real*8 mll(mdim),mI2(mdim)
complex*16 bl1(mdim),b12(100),g11(mdim),gl2(mdim)

do i= 1,nodes
bl1(i) = oms*ml1(i) - gl1(i)
bI2(i) = oms*ml2(i) - gI2(i)
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end do

return
end

subroutine love (al,a2,b1,b2,
1 eV,
2 b22,p,q,1,w,
3 int,n,
4 mdim,mdim2,mdim3,*)

solves eigenvalue problem for love waves

implicit real*8 (a-h,0-z)

integer*4 int(mdim3)

complex*16 c,d,ev,s,X,y,z

complex* 16 al(mdim),a2(mdim),b1(mdim),b2(mdim)
complex*16 b22(mdim3),e(mdim),p(mdim2),q(mdim2),r(mdim?2)
complex*16 w(mdim?2),v(mdim,mdim)

data tau/1.0d-7/,eps/1.0d-9/

tol=cdabs(al(1))*1.0d-20
nl=n-1
n2=n-2
do 20 j=1,n
20 b22(j)=b2(j)*2.0d0
t=0.0d0
ev=t
search for root of determinant by newton method
do 500 nv=1,n
nvl=nv-1
tp=1.
it=0
nit=0
ev=ev*.999
goto 108
105 ev=ev*(1.+tau)
tp=0.
108 it=it+1
if(it.1t.100) go to 109
write (*,*) ' failure to converge in 100 newton steps'
return 1
109 d=0.
if(nv1.eq.0.0d0) go to 115
do 110 j=1,nv1
c=ev-e(j)
t=dabs(dreal(c))+dabs(dimag(c))
if(t.It.tau*(dabs(dreal(e(j)))+dabs(dimag(e(j))))) go to 105
110 d=d-1./c
115 x=al(1)-ev*b1(1)
if(dabs(dreal(x))+dabs(dimag(x)).lt.tol) x=tol
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C

=-b1(1)/x
d=d+y
do 120 j=2,n
i=j-1
z=a2(i)-ev*b2(i)
c=z/x
x=al(j)-ev*b1(j)-z*c
if(dabs(dreal(x))+dabs(dimag(x)).lt.tol) x=tol
y=(-b1()H(b22()+z*y)*c)/x

120 d=d+y

d=-1./d

ev=ev+d

c=d/ev
t=dabs(dreal(c))+dabs(dimag(c))
if(t.gt.eps) go to 108

if(nit.eq.1) go to 200

nit=1

tp=t

goto 108

200 continue

e(nv)=ev
compute eigenvector by inverse iteration
do 210 j=1,n

210 w(j)=1.

reduction of matrix
x=al(1)-ev*b1(1)
y=a2(1)-ev*b2(1)
=y
do 250 i=1,nl
j=itl
c=al(j)-ev*bl(j)
s=r(i)
1(j)=a2(j)-ev*b2(j)
t=dabs(dreal(x))+dabs(dimag(x))
if(t.ge.dabs(dreal(s))+dabs(dimag(s))) go to 230
p()=1./s
q(i)=c
int(i) =1
z=-x*p(i)
x=y+z*c
y=z2*1(j)
goto 250

230 if(t.1t.tol) x=tol

p()=1./x
q()=y
int(i) = 0
z=-s*p(i)
X=c+z*y
y=t(j)

250 v(i,nv)=z

if(dabs(dreal(x))+dabs(dimag(x)).lt.tol) x=tol
niter=0

300 niter=niter+1
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c reduction of vector
do 330 i=1,nl
z=v(i,nv)
if(int(i).eq.1) go to 320
w(it+1)y=w(i+1)+z*w(i)
go to 330
320 y=w(i)
w(i)=w(i+1)
w(it1)=y+z*w(i)
330 continue
c back substitution
w(n)=w(n)/x
w(nl)=(w(nl)-q(n1)*w(n))*p(nl)
do 350 1=2,n1
i=n-1
y=w(i)-q(i)*w(i+1)
if(int(i).eq.1) y=y-r(i+1)*w(i+2)
350 w(i)=y*p()
if(niter.1t.2) go to 300
c normalize eigenvector
cons=cdabs(w(1))
do1j=2,n
1 if(cons.lt.cdabs(w(j))) cons=cdabs(w(j))
cons=1./cons
do2j=1,n
2 w(j=w(j)*cons
c=w(1)*(b1(1)*w(1)+b2(1)*w(2))
do 420 j=2,n1
420 c=ctw(§)*(b2G-1)*w(-1)+b1(G)*w()+b2()*w(j+1))
c=ctw(n)*(b2(n1)*w(nl)+bl(n)*w(n))
c=1./cdsqrt(c)
do 440 j=1,n
440 v(j,nv)=w(j)*c
500 continue
do51i=1,n
c=cdsqrt(e(i))
cr=dreal(c)
ci=dimag(c)
if(ci.gt.0.0d0.0or.(ci.eq.0.0d0.and.cr.1t.0.0d0)) c=-c
51 e(i)=c

return
end

subroutine prerayl (crl,cr2,grl,gr2,mrl,mr2,

1 oms,
2 nodes,
3 mdim2)

implicit real*8 (a-h,0-z)
real*8 mr1(mdim?2),mr2(mdim?2)
complex*16 crl(mdim2),cr2(mdim2),gr1(mdim?2),gr2(mdim?2)
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do i = 1,nodes
k1 =2%
k2 =kl1-1
crl(k2) = gr1(k2) - oms*mr1(k2)
cri(kl) = gr1(kl) - oms*mrl(k1)
cr2(k2) = gr2(k2) - oms*mr2(k2)
cr2(k1) = gr2(k1) - oms*mr2(k1)
end do

return
end

subroutine raylgh (al,a3,b2,b4,c1,c3,

1 eV,

2 a,vl,v2,ul,u2,rl,r2,;s1,s2,
3 mvb,nn,

4 mdim2,mdim3,*)

solves eigenvalue problem for rayleigh waves

implicit real*8 (a-h,0-z)

integer*4 mvb(mdim3)

complex*16 cf

complex*16 e(mdim2),v(mdim2,mdim2)

complex*16 r1(mdim2),r2(mdim2),ev,evs,ce,cd,dev,c,d

complex*16 a(mdim2*4),v1(mdim3),v2(mdim2),ul(mdim2),u2(mdim2)
complex*16 sl(mdim2),s2(mdim2)

complex*16 al(mdim?2),a3(mdim2),b2(mdim2),b4(mdim?2)

complex*16 c1(mdim2),c3(mdim2)

data eps1/1.e-5/,eps2/1.e-10/

nl=nn-1
n2=nn-2

do 10 j=1,n2,2
mvb(j)=j+3*nn
i=j+1

10 mvb(i)=i+2*nn
mvb(nl)=nl+nn
xn=0.
do 15 j=1,nn
x=cl(j)/al(j)

15 xn=xn-+dabs(x)
xn=dsqrt(xn/nn)
c=demplx(xn,xn+xn)
do 20 j=1,nn
s1(G)=1.
s2(j)=c
v1()=s1()
v2(j)=s2())
r1(j)=0.

20 r2(j)=0.
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ev=xn/nn
isw=0
ke=0
mc=0
400 kc=kc+1
do 50 n=1,nn
ul(n)=cl(n)*vl(n)
50 u2(n)=al(n)*v2(n)
do 55 n=3,nn
I=n-2
ul(D=ul()+c3()*vi(n)
ul(n)=ul(m)+c3(N)*vi(l)
u2(=u2(l)+a3(1)*v2(n)
55 v2(n)=u2(n)+a3@D)*v2(l)
if(isw.eq.1) go to 85
isw=0
cd=1.
x=cdabs(ev)/2.
ev=dcmplx(x,x+X)
goto 87
85 ev=conjg(ev)
isw=2
cd=1.
87 k=0
do 200 it=1,100
evs=ev¥ev
do 90 n=1,nn
a(n)=evs*al(n)+cl(n)
a(ntnn)=ev*b2(n)
a(n+2*nn)=evs*a3(n)+c3(n)
a(n+3*nn)=ev*b4(n)
90 v2(n)=(ul(n)-u2(n)*ev)*cd
do 150 n=1,nl
i=n
j=n+mn
m=mvb(n)
do 120 I=j,m,nn
c=a(l)/a(n)
i=it+1
ji=i
do 110 k=L,m,nn
a(ji)=a(ji)-c*a(k)
110 jisji+nn
a(ly=c
120 v2(i)=v2(i)-c*v2(n)
150 v2(n)=v2(n)/a(n)
n=nn

if(cdabs(a(n)).eq.0.0d0) then -

dev=dev*0.5
ev=ev-dev

goto 200

endif
v2(n)=v2(n)/a(n)
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do 160 k=1,n1
n=n-1
i=n
j=ntnn
m=mvb(n)
do 160 1=j,m,nn
i=itl

160 v2(n)=v2(n)-a()*v2(i)
ce=0.
do 170 n=1,nn
v1(m)=(v2(n)-v1(n)*cd)/ev
ce=ce-ul(n)*vl(n)+u2(n)*v2(n)
ul(n)=cl(n)*vl(n)

170 u2(n)=al(n)*v2(n)
ce=ce*cd
do 180 n=3,nn
[=n-2
ul(D=ul()+c3(1)*v1(n)
ul(m)=ul(n)+c3(1)*vi(l)
u2(=u2(l)+a3(1)*v2(n)

180 u2(n)=u2(n)+a3()*v2(l)
cd=0.
do 190 n=1,nn

190 cd=cd-ul(n)*v1(n)+u2(n)*v2(n)
dev=ce/cd
if(it.gt.15) dev=dev*0.5
ev=evt+dev
cf=cd
cd=cdsqrt(2./cd)
c=dev/ev
x=dabs(dreal(c))+dabs(dimag(c))
if(ik.eq.1.and.x.lt.eps2) go to 300
if(x.lt.eps1) ik=1

200 continue

write (*,*) ' failure to converge in 100 iteration steps'

return 1
300 e(kc)=ev
icr=0
x=dabs(dreal(ev))
y=dabs(dimag(ev))
Z=Xty
if(y/z.1t.eps2) icr=1
if(x/z.1t.eps2) icr=2
if(icr.eq.1) e(kc)=dreal(ev)
if(icr.eq.2) e(kc)=dimag(ev)*(0.,1.)
do 310 n=1,nn
310 v(n,kc)=v2(n)*cd
c if the eigenvalue is real choose the sign such that
¢ the group velocity becomes positive
if(icr.ne.1) go to 316
x=(v1(D)*v1(D)+v1(2)*v1@2))*ev
if(x.gt.0.0d0) go to 316
e(kc)=-e(kc)
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do 315 n=2,nn,2
315 v(n,kc)=-v(n,kc)

¢ check the special orthogonality of the newly found eigenvector

¢ and the sum of the previously found eigenvector
316 ce=0.
do 330 n=1,nn
330 ce=ce-rl(n)*ul(n)+r2(n)*u2(n)
ce=ce*cd
x=dabs(dreal(ce))+dabs(dimag(ce))
if(x.lt.epsl) go to 335
write (*,*) ' failure to find an orthogonal eigenvector'
return 1
335 c=1./e(kc)
do 340 n=1,nn
rl(n)=rl(n)+v(nkc)*c
340 r2(n)=r2(n)+v(n,kc)
¢ find a starting vector orthogonal to all eigenvectors found
¢ for the iteration toward the next eigenvector
c=0.
d=0.
do 342 n=2,nn,2
m=n-1
c=c-ul(m)*s1(m)+u2(n)*s2(n)
342 d=d-ul(n)*sl(n)+u2(m)*s2(m)
ce=2./cf
c=c*ce
d=d*ce
do 343 n=2,nn,2
m=n-1
s1(m)=s1(m)-c*v1(m)
sl(n)=s1(n)-d*v1(n)
s2(m)=s2(m)-d*v2(m)
s2(n)=s2(n)-c*v2(n)
vl(m)=s1(m)
vl(n)=s1(n)
v2(m)=s2(m)
343 v2(n)=s2(n)
if(icr+isw.eq.0) isw=1
mc=mc+1
if(mc.ge.nn) go to 350
go to 400
¢ form vectors for displacement expansion
350 do 610 n=1,nn
c=1.
x=dimag(e(n))
if(x.1e.0.) go to 600
e(n)=-e(n)
c=-c
600 do 610 j=2,nn,2
610 v(j,n)=v(j,n)*c

return
end
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C

SUBROUTINE HANKEI(ZZ,H0,H1,IND)

C Computation of zero and first order Hankel functions

C

C ZZ - complex argument, -3.1415...LE.ARG(Z) .LE. 3.1415...
C HO - Hankel function of IND'th kind (IND=1,2) and zero order
C HI - Hankel function of IND'th kind (IND=1,2) and first order

C

C Written by G. Waas and E. Kausel

C

IMPLICIT REAL*8 (A-H,0-Z)
COMPLEX*16 Z,HO,H1,C,A,E,E2,ZH.P
COMPLEX*16 G0,G1,ZZ
Z=77
SG=1.D0
IF(OND.EQ.1)SG=-1.D0
X=DREAL(Z)
Y=DIMAG(Z)*SG
R=DSQRT(X*X+Y*Y)
PHI=DATAN2(Y,X)
IF(R.LE.10.D0)GO TO 6

Use asymptotic expansion for R > 10
J=2.D0*R
I1=3
H0=0.DO
H1=0.DO
IF(PHI.LT.1.57D0)GO TO 2
=0

=-X
Z=7
SG=-SG
PHI=3.141592653589793D0-PHI
Y=-Y
PHI=-PHI
SG=-SG
II=11+1
G0=2.D0*H0
G1=2.D0*H1
C=DCMPLX(0.D0,SG*0.125D0)/Z
K=2
P=C*C
A=4.5D0*P
P=7.5D0*P
H0=1.D0+C+A
H1=1.D0-3.D0*C-P
I=4*K
K=K+1
DI=I
DK=K
A=A*C*(DI+1.D0/DK)
P=P*C*(DI-3.D0/DK)
HO=HO0+A
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H1=H1-P
IF(DABS(DREAL(P))+DABS(DIMAG(P)).GT.1.D-16.AND.K.LT.J)GO TO 3
C=H0/H1*DCMPLX(0.D0,-SG)
AR=(0.785398163397448D0-X-PHI/2.D0)*SG
E=0.797884560802865D0/DSQRT(R)*DEXP(Y)*DCMPLX(DCOS(AR),DSIN(AR))
IF(X.NE.0.OR.PHI.GT.0.)GO TO 4
E=DCMPLX(0.D0,DIMAG(E))
4 HO=HO*E
H1=H1*E*DCMPLX(0.D0,SG)
HO=HO0+GO .
H1=G1+H1
GO TO (1,5,9),11
5 Hl=-Hl
GO TOS8
C  Use ascending series for R <= 10
6 ZH=Z/2.D0
C=-ZH*ZH
E=DCMPLX(0.D0,.318309886183791D0)*SG
E2=E*2.D0
A=1.D0-E2*(0.577215664901533D0+DLOG(R/2.D0))+PHI*0.636619772367582
$DO
P=1.D0
K=1
HO=A
H1=A+E*(1.D0-1.D0/C)
7 A=A+E2/K
P=P*C
HO=HO+A*P
K=K+1
P=P/(K*K)
H1=H1+(A*K+E)*P
IF(DABS(DREAL(P))+DABS(DIMAG(P)).GT.1.D-16) GO TO 7
H1=H1*ZH
IF(X.NE.0.OR.PHL.GT.0.)GO TO 8
HO=DCMPLX(0.D0,DIMAG(HO0))
H1=DREAL(H1)
8 C=H0/H1
9 RETURN
END

SUBROUTINE BESSEL (Z2Z,J0,J1)
g Computation of zero and first order Bessel functions
g ZZ - complex argument, -3.1415..LE.ARG(Z) .LE. 3.1415...
g Written by E. Kausel
C

IMPLICIT REAL*8 (A-H,0-Z)
COMPLEX*16 Z,7Z,C,P,A,A0,A1,B0,B1,J0,]1
Z=77

X = DREAL(Z)

Y = DIMAG(Z)




oo N

10

20

R =DSQRT (X*X + Y*Y)
IF (R.LE.10.D0) GO TO 30

Use asymptotic expansion for R > 10

PHI = DATAN2 (Y,X)
L=0
IF (X.GE.0.D0) GO TO 10
L=1
Z=-7
PHI = PHI - 3.14159265358793D0 * DSIGN (1.D0,PHI)
X=-X
Y=-Y
J=2.D0*R
C =(0.D0,-0.125D0Y/Z
K=2
P=C*C
A =4.5D0*P
P ="7.5D0*P
A0=C
BO=1D0+A
Al=-3.D0*C
Bl =1D0-P
I=4*K
K=K+1
DI=1
DK =K
A = A*C * (DI + 1.D0/DK)
P =P*C * (DI - 3.D0/DK)
A0=A0+A
Al=A1-P
I=4*K
K=K+1
DI=1
DK =K
A = A*C * (DI + 1.D0/DK)
P =P*C * (DI - 3.D0/DK)
BO=B0+A
Bl1=B1-P
IF (DABS(DREAL(P))+DABS(DIMAG(P)).GT.1.D-16 .AND. K.LT.J) GO TO 20
CC=DCOS (X)
S =DSIN (X)
SS=S+CC
CC=S-CC
TH = DTANH (Y)
CH = 0.56418958354776D0 * DCOSH (Y)/DSQRT (R)
S =PHI/2.D0
A =CH * DCMPLX (DCOS(S),-DSIN(S))
JO = B0 * DCMPLX (SS,-CC*TH)
JO =J0 + AO*DCMPLX (-SS*TH,CC)
J1=B1 * DCMPLX (CC,SS*TH) -
J1=17J1 - A1*DCMPLX (CC*TH,SS)
IF (L.EQ.1) I1=-J1




LOoQO

40

C=1J0/]1

J0=JO*A
J1=J1*A
RETURN

Use ascending series for R <= 10

A=Z/2D0
C=-A*A
J0=1.D0
J1=1.D0
P=1.D0
K=1

P=P*C
J0 = JO+P
K=K+1
DK =K
P =P/DK
J1=J1+P
P = P/DK
IF ( DABS (DREAL(P)) + DABS (DIMAG(P)) .GT. 1.D-16) GO TO 40
J1=J1*A

C =Jo/m
RETURN
END
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